zbMATH — the first resource for mathematics

\(R\)-matrix quantization of the elliptic Ruijsenaars-Schneider model. (English. Russian original) Zbl 0978.81509
Theor. Math. Phys. 111, No. 2, 536-562 (1997); translation from Teor. Mat. Fiz. 111, No. 2, 182-217 (1997).
Summary: It is shown that the classical \(L\)-operator algebra of the elliptic Ruijsenaars-Schneider model can be realized as a subalgebra of the algebra of functions on the cotangent bundle over the centrally extended current group in two dimensions. It is governed by two dynamic \(r\) and \(\overline r\)-matrices satisfying a closed system of equations. The corresponding quantum \(R\)- and \(\overline R\)-matrices are found as solutions to quantum analogues of these equations. We present the quantum \(L\)-operator algebra and show that the system of equations for \(R\) and \(\overline R\) arises as the compatibility condition for this algebra. It turns out that the \(R\)-matrix is twist-equivalent to the Felder elliptic \(R^F\)-matrix, with \(\overline R\) playing the role of the twist. The simplest representation of the quantum \(L\)-operator algebra corresponding to the elliptic Ruijsenaars-Schneider model is obtained. The connection of the quantum \(L\)-operator algebra to the fundamental relation \(R^BLL=LLR^B\) with the Belavin elliptic \(R\)-matrix is established. As a by-product of our construction, we find a new \(N\)-parameter elliptic solution to the classical Yang-Baxter equation.

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
82B23 Exactly solvable models; Bethe ansatz
Full Text: DOI arXiv
[1] O. Babelon and C. M. Viallet,Phys. Lett. B,237, 411 (1990). · doi:10.1016/0370-2693(90)91198-K
[2] J. Avan and M. Talon,Phys. Lett. B,303, 33 (1993). · doi:10.1016/0370-2693(93)90039-K
[3] J. Avan, O. Babelon, and M. Talon,Algebra Anal.,6, No. 2, 67 (1994).
[4] E. K. Sklyanin,Algebra Anal.,6 No. 2, 227 (1994).
[5] H. W. Braden and T. Suzuki,Lett. Math. Phys.,30, 147 (1994). · Zbl 0790.35090 · doi:10.1007/BF00939702
[6] J. Avan and G. Rollet, ”The classicalr-matrix for the relativistic Ruijsenaars-Schneider system,” Preprint No. HET-1014, Brown University (1995). · Zbl 1073.81585
[7] Yu. B. Suris, ”Why are the rational and hyperbolic Ruijsenaars-Schneider hierarchies governed by the sameR-matrix as the Calogero-Moser ones?” hep-th/9602160 (1996).
[8] F. W. Nijhoff, V. B. Kuznetsov, E. K. Sklyanin, and O. Ragnisco, ”Dynamicalr-matrix for the elliptic Ruijsenaars-Schneider model,” solv-int/9603006 (1996). · Zbl 0896.35137
[9] Yu. B. Suris, ”Elliptic Ruijsenaars-Schneider and Calogero-Moser hierarchies are governed by the samer-matrix,” solv-int/9603011 (1996).
[10] S. N. Ruijsenaars,Commun. Math. Phys.,110, 191 (1987). · Zbl 0673.58024 · doi:10.1007/BF01207363
[11] M. A. Olshanetsky and A. M. Perelomov,Phys. Rep.,71, 313 (1981). · doi:10.1016/0370-1573(81)90023-5
[12] A. Gorsky and N. Nekrasov,Nucl. Phys. B,414, 213 (1994);Nucl. Phys. B,436, 582 (1995); A. Gorsky, ”Integrable many body systems in the field theories,” Preprint UUITP-16/94, (1994). · Zbl 1007.81547 · doi:10.1016/0550-3213(94)90429-4
[13] G. E. Arutyunov and P. B. Medvedev, ”Generating equation forr-matrices related to dynamic systems of Calogero type,” hep-th/9511070 (to appear inPhys. Lett. A).
[14] J. Avan, O. Babelon, and E. Billey,Commun. Math. Phys.,178, 281 (1996); hep-th/9505091. · Zbl 0870.17019 · doi:10.1007/BF02099449
[15] G. Felder, ”Conformal field theory and integrable systems associated with elliptic curves,” hep-th/9407154 (1994). · Zbl 0852.17014
[16] J. L. Gervais and A. Neveu,Nucl. Phys. B,238, 125 (1984). · doi:10.1016/0550-3213(84)90469-3
[17] O. Babelon, D. Bernard, and E. Billey,Phys. Lett. B,375, 89 (1996); q-alg/9511019. · Zbl 0894.17008 · doi:10.1016/0370-2693(96)00225-0
[18] G. E. Arutyunov and S. A. Frolov, ”Quantum dynamicR-matrices and quantum Frobenius group,” q-alg/9610009 (1996).
[19] G. E. Arutyunov, S. A. Frolov, and P. B. Medvedev, ”Elliptic Ruijsenaars-Schneider model via the Poisson reduction of the affine Heisenberg double,” hep-th/9607170 (1996). · Zbl 0925.81437
[20] G. E. Arutyunov, S. A. Frolov, and P. B. Medvedev, ”Elliptic Ruijsenaars-Schneider model from the cotangent bundle over the two-dimensional current group,” hep-th/9608013 (1996). · Zbl 0892.58039
[21] K. Hasegawa, ”Ruijsenaars’ commuting difference operators as commuting transfer matrices,” q-alg/9512029 (1995). · Zbl 0891.47021
[22] P. I. Etingof and I. B. Frenkel, ”Central extensions of current groups in two dimensions,” hep-th/9303047 (1993).
[23] F. Falceto and K. Gawedski,Commun. Math. Phys.,159, 549 (1994). · Zbl 0797.57011 · doi:10.1007/BF02099984
[24] L. D. Faddeev, ”Integrable models in (1+1)-dimensional quantum field theory,” in:Recent Advances in Field Theory and Statistical Mechanics (J. B. Zuber and R. Stora, eds.) (Les Houches Summer School Proc., Session XXXIX, 1982), Elsevier, 561 (1984).
[25] P. P. Kulish and E. K. Sklyanin, ”Quantum spectral transform method. Recent developments,” in:Integrable Quantum Field Theories (J. Hietarinta and C. Montonen, eds.) (Lect. Notes Phys., Vol. 51), 61 (1982). · Zbl 0734.35071
[26] A. A. Belavin,Nucl. Phys. B,180 [FS2], 189 (1981). · Zbl 0959.81006 · doi:10.1016/0550-3213(81)90414-4
[27] M. P. Richey and C. A. Tracy,J. Stat. Phys.,42, 311 (1986). · doi:10.1007/BF01127715
[28] Y. Quano and A. Fujii,Mod. Phys. Lett. A,8, 1585–1597 (1993). · Zbl 1020.82567 · doi:10.1142/S021773239300132X
[29] K. Hasegawa,J. Phys. A,26 3211–3228 (1993). · Zbl 0796.17028 · doi:10.1088/0305-4470/26/13/024
[30] K. Hasegawa,J. Math. Phys.,35, 6158–6171 (1994). · Zbl 0855.17008 · doi:10.1063/1.530735
[31] E. K. Sklyanin,Funct. Anal. Appl.,17, 273–284 (1983). · Zbl 0536.58007 · doi:10.1007/BF01076718
[32] R. J. Baxter,Ann. Phys.,76, 1–24; 25–47; 48–71 (1973). · Zbl 1092.82511 · doi:10.1016/0003-4916(73)90439-9
[33] M. Jimbo, T. Miwa, and M. Okado,Lett. Math. Phys.,14, 123–131 (1987);Nucl. Phys. B,300 [FS22], 74–108 (1988). · Zbl 0642.17015 · doi:10.1007/BF00420302
[34] I. M. Krichever, O. Babelon, E. Billey, and M. Talon, ”Spin generalization of Calogero-Moser system and the matrix KP equation,” hep-th/9411160 (1994). · Zbl 0843.58069
[35] N. Nekrasov, ”Holomorphic bundles and many-body systems,” hep-th/9503157 (1995). · Zbl 0859.35104
[36] B. Enriquez and V. Rubtsov, ”Hitchin systems, higher Gauden operators andr-matrices,”Math. Res. Lett.,3, No. 3, 343–358 (1996). · Zbl 0871.58038
[37] I. M. Krichever and A. V. Zabrodin,Russ. Math. Surv.,50, 1101 (1995); hep-th/9505039. · Zbl 0960.37030 · doi:10.1070/RM1995v050n06ABEH002632
[38] V. B. Kuznetsov and E. K. Sklyanin, ”Separation of variables forA 2 Ruijsenaars model and new integral representation forA 2 Macdonald polynomials,” q-alg/9602023 (1996). · Zbl 0896.35136
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.