Tomaschitz, R. Einstein coefficients and equilibrium formalism for tachyon radiation. (English) Zbl 0978.82503 Physica A 293, No. 1-2, 247-272 (2001). Summary: The spectral energy density of an ideal Bose gas of superluminal particles (tachyons) is derived. To this end, we consider atoms in equilibrium with tachyon radiation, study spontaneous and induced transitions effected by tachyons, calculate the Einstein coefficients, all semiclassically, and obtain, by detailed balancing, the equilibrium distribution of the tachyon gas. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Atomic transitions induced by tachyons are compared to photonic ones, and the tachyonic analog to the photoelectric effect is discussed. The cosmic tachyon background is scrutinized in detail; high- and low-temperature expansions of the internal energy, the entropy, the heat capacities, and the number density are compared with the corresponding quantities of the photon background. The negative mass square in the wave equation changes the frequency scaling in the Rayleigh-Jeans law, and there are also significant changes in the low-temperature regime, in particular in the caloric and thermal equations of state. Quantitative estimates on the tachyon background and on Rydberg transitions induced by tachyon radiation are derived. Cited in 1 Document MSC: 82B10 Quantum equilibrium statistical mechanics (general) Keywords:spectral energy density; ideal Bose gas; atomic transitions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Des Coudres, Th., Arch. Néerland. Sci. (II), 5, 652 (1900) · JFM 31.0837.02 [2] Sommerfeld, A., Proc. Konink. Akad. Wet. (Sec. Sci.), 7, 346 (1904) [3] Feinberg, G., Phys. Rev., 159, 1089 (1967) [4] Feinberg, G., Sci. Am., 222, 2, 69 (1970) [5] Feinberg, G., Phys. Rev. D, 17, 1651 (1978) [6] P.A.M. Dirac, Proc. Roy. Soc. A 167 (1937) 148 (reprinted in: R.H. Dalitz (Ed.), The Collected Works of P.A.M. Dirac, 1924-1948, Cambridge UP, Cambridge, 1995).; P.A.M. Dirac, Proc. Roy. Soc. A 167 (1937) 148 (reprinted in: R.H. Dalitz (Ed.), The Collected Works of P.A.M. Dirac, 1924-1948, Cambridge UP, Cambridge, 1995). [7] Tanaka, S., Prog. Theoret. Phys., 24, 171 (1960) [8] Terletsky, Ya. P., Sov. Phys. Dokl., 5, 782 (1961) [9] Newton, R., Science, 167, 1569 (1970) [10] Davies, P. C.W., Nuovo Cimento B, 25, 571 (1975) [11] Chaliasos, E., Physica A, 144, 390 (1987) · Zbl 0668.53049 [12] L. Brillouin, Wave propagation and group velocity, Academic Press, New York, 1960.; L. Brillouin, Wave propagation and group velocity, Academic Press, New York, 1960. · Zbl 0094.41601 [13] Wheeler, J. A.; Feynman, R. P., Rev. Mod. Phys., 17, 157 (1945) [14] Hoyle, F.; Narlikar, J. V., Rev. Mod. Phys., 67, 113 (1995) [15] Fuller, R. W.; Wheeler, J. A., Phys. Rev., 128, 919 (1962) · Zbl 0108.21704 [16] Wycoff, D.; Balazs, N. L., Physica A, 146, 175 (1987) [17] Balazs, N. L.; Voros, A., Phys. Rep., 143, 109 (1986) [18] Tomaschitz, R., Chaos Solitons Fractals, 7, 753 (1996) [19] Tomaschitz, R., Chaos Solitons Fractals, 8, 761 (1997) · Zbl 0936.83003 [20] Tomaschitz, R., Chaos Solitons Fractals, 9, 1199 (1998) · Zbl 0939.83046 [21] Tomaschitz, R., Int. J. Mod. Phys. D, 7, 279 (1998) · Zbl 0932.83061 [22] Anderson, R.; Vetharaniam, I.; Stedman, G. E., Phys. Rep., 295, 93 (1998) [23] Proca, A., J. Phys., 7, 347 (1936) · JFM 62.1633.03 [24] Goldhaber, A. S.; Nieto, M. M., Rev. Mod. Phys., 43, 277 (1971) [25] Tomaschitz, R., Int. J. Mod. Phys. A, 14, 4275,5137 (1999) · Zbl 0943.83010 [26] Tomaschitz, R., Int. J. Mod. Phys. A, 15, 3019 (2000) · Zbl 0966.83004 [27] Tomaschitz, R., Class. Quant. Grav., 16, 3349 (1999) · Zbl 1071.83572 [28] Tomaschitz, R., Eur. Phys. J. B, 17, 523 (2000) [29] N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields, Wiley, New York, 1980.; N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields, Wiley, New York, 1980. [30] E. Whittaker, A History of the Theories of Aether and Electricity, Thomas Nelson & Sons, London, 1951.; E. Whittaker, A History of the Theories of Aether and Electricity, Thomas Nelson & Sons, London, 1951. · Zbl 0043.24503 [31] Tomaschitz, R., Int. J. Theoret. Phys., 37, 1121 (1998) · Zbl 0947.83060 [32] Tomaschitz, R., Astrophys. Space Sci., 259, 255 (1998) · Zbl 0948.83078 [33] Tomaschitz, R., Astrophys. Space Sci., 271, 181 (2000) · Zbl 0966.83024 [34] R. Tomaschitz, Celest. Mech. Dyn. Astron. 77 (2000) 107.; R. Tomaschitz, Celest. Mech. Dyn. Astron. 77 (2000) 107. · Zbl 0979.83005 [35] L.I. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1968.; L.I. Schiff, Quantum Mechanics, McGraw-Hill, New York, 1968. [36] S. Chandrasekhar, Radiative Transfer, Dover Publ., New York, 1960.; S. Chandrasekhar, Radiative Transfer, Dover Publ., New York, 1960. [37] R.C. Tolman, Relativity, Thermodynamics and Cosmology, Clarendon, Oxford, 1934.; R.C. Tolman, Relativity, Thermodynamics and Cosmology, Clarendon, Oxford, 1934. · Zbl 0009.41304 [38] S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publ., New York, 1967.; S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Dover Publ., New York, 1967. · Zbl 0079.23901 [39] E.T. Copson, Asymptotic Expansions, Cambridge University Press, Cambridge, 1965.; E.T. Copson, Asymptotic Expansions, Cambridge University Press, Cambridge, 1965. · Zbl 0123.26001 [40] T.F. Gallagher, Rydberg Atoms, Cambridge University Press, Cambridge, 1994.; T.F. Gallagher, Rydberg Atoms, Cambridge University Press, Cambridge, 1994. [41] Smoot, G. F.; Scott, D.; Groom, D. E., Eur. Phys. J. C, 15, 1 (2000) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.