×

On the almost Goldbach problem of Linnik. (English) Zbl 0979.11051

In 1953 Yu. V. Linnik [Mat. Sb., Nov. Ser. 32 (74), 3-60 (1953; Zbl 0051.03402)] showed that every large even integer can be written as a sum of two odd primes and a bounded number of powers of 2. Assuming the generalized Riemann hypothesis, the authors show that, for \(k\geq 200\), every even \(N\geq N_k\) can be written as a sum of two odd primes and at most \(k\) powers of 2. They follow the original argument of Linnik, combined with a careful treatment of the numerical constant.

MSC:

11P32 Goldbach-type theorems; other additive questions involving primes

Citations:

Zbl 0051.03402
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML EMIS

References:

[1] Chen, J.R., On Goldbach’s problem and the sieve methods. Sci. Sin., 21 (1978), 701-739. · Zbl 0399.10046
[2] Davenport, H., Multiplicative Number Theory. 2nd ed., Springer, 1980. · Zbl 0453.10002
[3] Gallagher, P.X., Primes and powers of 2. Invent. Math.29(1975), 125-142. · Zbl 0305.10044
[4] Hardy, G.H. and Littlewood, J.E., Some problems of “patitio numerorum” V: A further contribution to the study of Goldbach’s problem. Proc. London Math. Soc. (2) 22 (1923), 45-56. · JFM 49.0127.03
[5] Halberstam, H. and Richert, H.-E., Sieve Methods, Academic Press, 1974. · Zbl 0298.10026
[6] Kaczorowski, J., Perelli, A. and Pintz, J., A note on the exceptional set for Goldbach’s problem in short intervals. Mh. Math.116 (1993), 275-282; corrigendum 119 (1995), 215-216. · Zbl 0836.11034
[7] Linnik, Yu. V., Prime numbers and powers of two. Trudy Mat. Inst. Steklov38 (1951), 151-169. · Zbl 0049.31402
[8] Linnik, Yu.V., Addition of prime numbers and powers of one and the same number. Mat. Sb.(N. S.) 32 (1953), 3-60. · Zbl 0051.03402
[9] Liu, J.Y., Liu, M.C., and Wang, T.Z., The number of powers of 2 in a representation of large even integers (I). Sci. China Ser. A 41 (1998), 386-398. · Zbl 1029.11049
[10] Liu, J.Y., Liu, M.C., and Wang, T.Z., The number of powers of 2 in a representation of large even integers (II). Sci. China Ser. A. 41 (1998), 1255-1271. · Zbl 0924.11086
[11] Languasco, A. and Perelli, A., A pair correlation hypothesis and the exceptional set in Goldbach’s problem. Mathematika43 (1996), 349-361. · Zbl 0884.11042
[12] Prachar, K., Primzahlverteilung. Springer, 1957. · Zbl 0080.25901
[13] Romanoff, N.P., Über einige Sätze der additiven Zahlentheorie. Math. Ann.109 (1934), 668-678. · JFM 60.0131.03
[14] Rosser, J.B. and Schoenfeld, L., Approximate formulas for some functions of prime numbers. Illinois J. Math.6 (1962), 64-94. · Zbl 0122.05001
[15] Vinogradov, A.I., On an “almost binary” problem. Izv. Akad. Nauk. SSSR Ser. Mat.20 (1956), 713-750. · Zbl 0072.27001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.