×

Corrugated surfaces and a. c. spectrum. (English) Zbl 0979.60050

Spectral and scattering properties of the discrete Laplacian on the half-space are considered. The boundary condition can be deterministic as well as random. The existence of the wave operator is shown. It is studied when and where the wave operators are complete and the spectrum of Laplacian is purely absolutely continuous.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
47A10 Spectrum, resolvent
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/BF02099760 · Zbl 0782.60044
[2] DOI: 10.1016/0022-1236(81)90034-3 · Zbl 0488.47021
[3] Boutet de Monvel A., Helv. Phys. Acta 71 pp 459– (1998)
[4] DOI: 10.1007/BF00739090 · Zbl 0831.47052
[5] DOI: 10.1007/BF01196937 · Zbl 0393.34015
[6] DOI: 10.1023/A:1007418115492 · Zbl 0916.47027
[7] Jakšić V., Helv. Phys. Acta 71 pp 629– (1999)
[8] DOI: 10.1007/978-1-4612-1678-0_7
[9] DOI: 10.1007/BF02099252 · Zbl 0852.47038
[10] DOI: 10.1016/S0370-1573(97)00023-9 · Zbl 1001.82526
[11] Naboko S. N., Theor.-Math 68 pp 18– (1986)
[12] DOI: 10.1090/S0002-9939-97-03559-4 · Zbl 0888.34071
[13] DOI: 10.1142/S0129055X94000420 · Zbl 0841.60081
[14] DOI: 10.1002/cpa.3160390105 · Zbl 0609.47001
[15] DOI: 10.1007/BF01976045 · Zbl 0528.35023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.