zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lattice BGK model for incompressible Navier-Stokes equation. (English) Zbl 0979.76069
Summary: Most of the existing lattice Boltzmann BGK models (LBGK) can be viewed as compressible schemes to simulate incompressible fluid flows. The compressible effect might lead to some undesirable errors in numerical simulations. In this paper we design a LBGK model without compressible effect for simulating incompressible flows. The incompressible Navier-Stokes equations are exactly recovered from this incompressible LBGK model. Numerical simulations of plane Poiseuille flow, unsteady two-dimensional shear decaying flow, driven cavity flow, and flow around circular cylinder are performed. The results agree well with analytic solutions and with numerical results of previous studies.

76M28Particle methods and lattice-gas methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
Full Text: DOI
[1] Reference removed in proofs.
[2] Chen, S.; Doolen, G.: Lattice Boltzmann method for fluid flows. Ann. rev. Fluid mech. 30, 329 (1998)
[3] Chen, S.; Martinez, D.; Mei, R.: On boundary conditions in lattice Boltzmann methods. Phys. fluids. 8, 2527 (1996) · Zbl 1027.76630
[4] Coutanceau, M.; Bouard, R.: Experimental determination of the Main features of the viscous flow in the wake of a circular cylinder in uniform translation. 1. Steady flow. J. fluid mech. 79, 231 (1977)
[5] E., W. -N.; Liu, J.: Essential compact scheme for unsteady viscous incompressible flows. J. comput. Phys. 126, 122 (1996)
[6] Filippova, O.; Hänel, D.: Grid refinement for lattice-BGK models. J. comput. Phys. 147, 219 (1998) · Zbl 0917.76061
[7] Frisch, U.; D’humiéres, D.; Hasslacher, B.; Lallemand, P.; Pomeau, Y.; Rivet, J. -P.: Lattice gas hydrodynamics in two and three dimensions. Complex syst. 1, 649 (1987) · Zbl 0662.76101
[8] Ghia, U.; Ghia, K. N.; Shin, C. T.: High-re solutions for incompressible flow using the Navier--Stokes equations and a multigrid method. J. comput. Phys. 48, 387 (1982) · Zbl 0511.76031
[9] He, X.; Luo, L. -S.: Lattice Boltzmann model for the incompressible Navier--Stokes equation. J. stat. Phys. 88, 927 (1997) · Zbl 0939.82042
[10] He, X.; Doolen, G.: Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder. J. comput. Phys. 134, 306 (1997) · Zbl 0886.76072
[11] Higuera, F. J.; Succi, S.: Simulating the flow around a circular cylinder with a lattice Boltzmann equation. Europhys. lett. 8, 517 (1989)
[12] Hou, S.; Zou, Q.: Simulation of cavity flow by the lattice Boltzmann method. J. comput. Phys. 118, 329 (1995) · Zbl 0821.76060
[13] Lin, Z.; Fang, H.; Tao, R.: Improved lattice Boltzmann model for incompressible two-dimensional steady flows. Phys. rev. E 54, 6323 (1997)
[14] Martinez, D. O.; Matthaeus, W. H.; Chen, S.; Montgomery, D. C.: Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Phys. fluids. 6, 1285 (1994) · Zbl 0826.76069
[15] Mei, R.; Shyy, Q.: On the finite difference-based lattice Boltzmann method in curvilinear coordinates. J. comput. Phys. 143, 426 (1998) · Zbl 0934.76074
[16] Nieuwstadt, F.; Keller, H. B.: Viscous flow past circular cylinders. Comput. fluids. 1, 59 (1973) · Zbl 0328.76022
[17] Qian, Y.; D’humiéres, D.; Lallemand, P.: Lattice BGK models for Navier--Stokes equation. Europhys. lett. 17, 479 (1992) · Zbl 1116.76419
[18] Schreiber, R.; Keller, H.: Driven cavity flow by efficient numerical techniques. J. comput. Phys. 49, 310 (1983) · Zbl 0503.76040
[19] Vanka, S. P.: Block-implicit multigrid solution of Navier--Stokes equations in primitive variables. J. comput. Phys. 65, 138 (1986) · Zbl 0606.76035
[20] Wagner, L.: Pressure in lattice Boltzmann simulations of flow around a cylinder. Phys. fluids. 6, 3516 (1994) · Zbl 0832.76079
[21] Wagner, L.; Hayot, F.: Lattice Boltzmann simulations of flow past a cylindrical obstacle. J. stat. Phys. 81, 63 (1995) · Zbl 1106.82361
[22] Zou, Q.; Hou, S.; Chen, S.; Doolen, G.: An improved incompressible lattice Boltzmann model for time-independent flows. J. stat. Phys. 81, 35 (1995) · Zbl 1106.82366