Daubechies, Ingrid; Klauder, John R. Quantum-mechanical path integrals with Wiener measure for all polynomials Hamiltonians. II. (English) Zbl 0979.81517 J. Math. Phys. 26, No. 9, 2239-2256 (1985). Summary: The coherent-state representation of quantum-mechanical propagators as well-defined phase-space path integrals involving Wiener measure on continuous phase-space paths in the limit that the diffusion constant diverges is formulated and proved. This construction covers a wide class of selfadjoint Hamiltonians, including all those which are polynomials in the Heisenberg operators; in fact, this method also applies to maximal symmetric Hamiltonians that do not possess a selfadjoint extension. This construction also leads to a natural covariance of the path integral under canonical transformations. An entirely parallel discussion for spin variables leads to the representation of the propagator for an arbitrary spin-operator Hamiltonian as well-defined path integrals involving Wiener measure on the unit sphere, again in the limit that the diffusion constant diverges. Cited in 27 Documents MathOverflow Questions: Path integral as quantum mechanics on the tangent bundle MSC: 81S40 Path integrals in quantum mechanics 81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics × Cite Format Result Cite Review PDF Full Text: DOI References: [1] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [2] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [3] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [4] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [5] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [6] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [7] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [8] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [9] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [10] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [11] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [12] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [13] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [14] DOI: 10.1063/1.1704124 · Zbl 0133.22905 · doi:10.1063/1.1704124 [15] Klauder J. R., Phys. Rev. 52 pp 1161– (1984) [16] DOI: 10.1007/BF02790311 · Zbl 0133.07701 · doi:10.1007/BF02790311 [17] DOI: 10.1007/BF01646493 · Zbl 1125.82305 · doi:10.1007/BF01646493 [18] DOI: 10.1002/cpa.3160140303 · Zbl 0107.09102 · doi:10.1002/cpa.3160140303 [19] DOI: 10.1017/S0305004100000487 · doi:10.1017/S0305004100000487 [20] DOI: 10.1017/S0305004100000487 · doi:10.1017/S0305004100000487 [21] DOI: 10.1063/1.525234 · doi:10.1063/1.525234 [22] DOI: 10.1103/PhysRevB.29.5617 · doi:10.1103/PhysRevB.29.5617 [23] DOI: 10.1007/BF00400438 · Zbl 0521.60078 · doi:10.1007/BF00400438 [24] DOI: 10.1063/1.525233 · doi:10.1063/1.525233 [25] DOI: 10.1016/0022-1236(68)90020-7 · Zbl 0157.21501 · doi:10.1016/0022-1236(68)90020-7 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.