Shalom, Yehuda Bounded generation and Kazhdan’s property (T). (English) Zbl 0980.22017 Publ. Math., Inst. Hautes Étud. Sci. 90, 145-168 (1999). A group \(G\) is said to be boundedly generated if it has a finite subset \(S\) and some number \(\nu\), depending only on \(G\) and \(S\), such that every \(g\in G\) can be written as a product: \(g=g^{k_1}_1 g_2^{k_2} \dots g_\nu^{k_\nu}\), with \(g_i\in S\) and \(k_i\) integers. Let \(G\) be a topological group, \(K\subset G\) a subset, \(\varepsilon >0\), and \((\pi,H)\) a continuous unitary \(G\)-representation. A vector \(v\in H\) is called \((K,\varepsilon)\)-invariant, if \(\|\pi (g)v-v \|< \varepsilon\|v\|\) \(\forall g\in K\). The group \(G\) is said to have Kazhdan’s property \((T)\) if there exist a compact set \(K\subset G\) and \(\varepsilon>0\), such that every continuous unitary \(G\)-representation with a \((K,\varepsilon)\)-invariant vector contains a nonzero \(G\)-invariant vector. In this case, \((K,\varepsilon)\) are called Kazhdan constants for \(G\). In this paper the author makes strong use of the property of bounded generation in the study of Kazhdan’s property \((T)\). Reviewer: Udai Tewari (Kanpur) Cited in 1 ReviewCited in 69 Documents MSC: 22E46 Semisimple Lie groups and their representations 22E50 Representations of Lie and linear algebraic groups over local fields 20G05 Representation theory for linear algebraic groups Keywords:unitary \(G\)-representation; topological group; Kazhdan constants; bounded generation; Kazhdan’s property × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] S. I. Adian andJ. Mennicke, On bounded generation of SL n (Z),Inter. Jour. Alg. and Comp., Vol. 2, No.4 (1992), 357–365. · Zbl 0794.20061 · doi:10.1142/S0218196792000220 [2] H. Bass, J. Milnor andJ. P. Serre, Solution of the congruence subgroup problem for SL n (n 3) and Sp2n (n 2),IHES Publ.,33 (1967), 59–137. · Zbl 0174.05203 [3] M. Burger, Kazhdan constants for SL3(Z),J. Reine Angew. Math.,413 (1991), 36–67. · Zbl 0704.22009 · doi:10.1515/crll.1991.413.36 [4] D. Carter andG. Keller, Bounded elementary generation of SL n {itO},Amer. J. Math.,105 (1983), 673–687. · Zbl 0525.20029 · doi:10.2307/2374319 [5] G. Cooke andP. Weinberger, On the constructions of division chains in algebraic number fields, with applications to SL2,Comm Alg.,3 (1975), 481–524. · Zbl 0315.12001 · doi:10.1080/00927877508822057 [6] J. Dieudonné, Sur les fonctions continuesp-adiques,Bull. Sci. Math. (2),68 (1944), 79–95. · Zbl 0060.08204 [7] P. de La Harpe, A. G. Robertson, A. Valette, On the spectrum of the sum of generators for a finitely generated group,Israel J. of Math.,81 (1993), No. 1–2, 65–96. · Zbl 0791.43008 · doi:10.1007/BF02761298 [8] P. de LaHarpe andA. Valette, La Propriété (T) de Kazhdan pour les Groupes Localement Compacts,Astérisque,175, Société Math. de France (1989). [9] R. S. Ismagilov, Representations of Infinite-Dimensional Groups, Translations of Mathematical Monographs,152,Amer. Math. Soc., Providence (1996). · Zbl 0856.22001 [10] W. van der Kallen, SL3(C[x]) does not have bounded word length. Proceedings of the conference on Algebraic K-theory (Oberwolfach, 1980),Lecture Notes in Math.,966 (1982), 357–361. · Zbl 0935.20501 · doi:10.1007/BFb0062183 [11] D. A. Kazhdan, On a connection between the dual space of a group and the structure of its closed subgroups,Func. Anal. Appl. 1 (1967), 63–65. · Zbl 0168.27602 · doi:10.1007/BF01075866 [12] A. Lubotzky,Discrete Groups, Expanding Graphs and Invariant Measures, Birkhäuser, 1994. · Zbl 0826.22012 [13] A. Lubotzky, Subgroup growth and congruence subgroups,Invent. Math.,119 (1995), 267–295. · Zbl 0848.20036 · doi:10.1007/BF01245183 [14] N. Mok, Harmonic forms with values in locally constant Hilbert bundles,Proceeding of the conference in honor of J. P. Kahane (Orsay 1993), J. Fourier Anal. Appl. (special issue), (1995), 433–453. · Zbl 0891.58001 [15] V. K. Murty, Bounded and finite generation of arithmetic groups,Canadian Mathematical Society Conference Proceedings, Vol.15 (1995), 249–261. · Zbl 0851.11026 [16] N. Mok, Y. T. Siu andS.-K. Yeung, Geometric superrigidity,Invent. Math.,113 (1993), 57–83. · Zbl 0808.53043 · doi:10.1007/BF01244302 [17] P. Pansu, Formules de Matsushima, de Garland et propriété (T) pour des groupes agissant sur des espaces symétriques ou des immeubles,Bull. Soc. Math. France,126 (1998), 107–139. [18] V. Platonov andA. Rapinchuk, Abstract properties of S-arithmetic subgroups and the congruence subgroup problem,Izve. R. Acad. Sci. Ser. Math. (former Math. USSR Izvestiya),56 (1992), 483–508. · Zbl 0785.20025 [19] A. Pressley andG. Segal, Loop Groups,Oxford Mathematical Monographs, 1988. · Zbl 0638.22009 [20] M. S. Raghunathan, On the congruence subgroup problem,IHES Publ.,46 (1976), 107–161. · Zbl 0347.20027 [21] A. Rapinchuk, Congruence subgroup problem for algebraic groups: old and new,Astérisque,209 (1992), 73–84. · Zbl 0805.20040 [22] A. Rapinchuk, On the finite dimensional unitary representations of Kazhdan groups,Proc. of AMS,127, No. 5 (1999), 1557–1562. · Zbl 0926.22001 · doi:10.1090/S0002-9939-99-04696-1 [23] A. Rapinchuk, On SS-rigid groups and A. Weil’s criterion for local rigidity I,Manuscripta Math.,97 (1998), 529–543. · Zbl 0920.20004 · doi:10.1007/s002290050119 [24] W. H. Schikhof, Ultra Calculus: An Introduction top-Adic Analysis,Cambridge Studies in Advanced Mathematics 4, 1984. · Zbl 0553.26006 [25] Y. Shalom, Explicit Kazhdan constants for representations of semisimple and arithmetic groups,Ann. Inst. Fourier (Grenoble),50 (2000) No 3, 833–863. · Zbl 0966.22004 [26] Y. Shalom, Harmonic maps, superrigidity, and property (T), preprint. [27] A. A. Suslin, On the structure of the special linear group over polynomial rings,Math. USSR Izv., Vol.11 (1977), 221–238. · Zbl 0378.13002 · doi:10.1070/IM1977v011n02ABEH001709 [28] O. I. Tavgen, Bounded generation of Chevalley groups over rings of algebraic S-integers,Math. USSR Izv.,36 (1991), 101–128. · Zbl 0709.20024 · doi:10.1070/IM1991v036n01ABEH001950 [29] A. M. Vershik, M. I. Graev andI. M. Gelfand, Representations of the group SL(2,R), where R is a ring of continuous functions,Russ. Math. Surv.,28 (5) (1973), 87–132. · Zbl 0297.22003 · doi:10.1070/RM1973v028n05ABEH001616 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.