Maruyama, Toru A generalization of the weak convergence theorem in Sobolev spaces with application to differential inclusions in a Banach space. (English) Zbl 0980.34057 Proc. Japan Acad., Ser. A 77, No. 1, 5-10 (2001). Let \(E\) be a real reflexive separable Banach space, \(F:[0,T]\times E\to 2^{E}\) a multivalued map satisfying some assumptions that will be specified later and \(u:[0,T]\times E\times E\to \overline {\mathbb{R}}\) a given map. In the first part of the paper, the author considers the multivalued differential equation (1) \(\dot x(t)\in F(t,x(t))\), \(x(0)=a\). It is proved under the conditions \(F(t,x)\) is nonempty compact convex-valued, measurable in \(t\), upper hemi-continuous in \(x\) and \(L^{p}\)-integrably bounded, that problem (1) has a solution \(x\in W^{1,p}([0,T],E)\). Also, if \(A\) is a nonempty compact convex subset of \(E\), the correspondence \(S:A\to W^{1,p}([0,T],E)\) is compact-valued and upper hemi-continuous on \(A\) in the weak topology for \(W^{1,p}\). In the second part, the author studies the following variational problem (2) \(\text{minimize}_{S(a)} \int_{0}^{T}u(t,x(t),\dot x(t)) dt,\) where \(S(a)\) represents the solution set to problem (1). This paper is a continuation of problems (1) and (2) examinated by the author in [Proc. Japan Acad., Ser. A 60, 161-164 (1984; Zbl 0549.49006), ibid. 60, 212-214 (1984; Zbl 0549.49007), ibid. 66, 217-221 (1990; Zbl 0728.49004)]. Reviewer: M.Benchohra (Sidi Bel Abbes) Cited in 3 Documents MSC: 34G20 Nonlinear differential equations in abstract spaces 34A60 Ordinary differential inclusions 46N20 Applications of functional analysis to differential and integral equations 49J24 Optimal control problems with differential inclusions (existence) (MSC2000) Keywords:differential inclusion; variational problem; weak convergence; existence; real separable reflexive Banach space Citations:Zbl 0549.49006; Zbl 0549.49007; Zbl 0728.49004 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aubin, J. P., and Cellina, A.: Differential Inclusions. Springer, Berlin (1984). [2] Castaing, C.: Sur les équations différentielles multivoques. C. R. Acad. Sci. Paris, Sér. A, 263 , 63-66 (1966). · Zbl 0143.31102 [3] Castaing, C., and Clauzure, P.: Semi continuité des fonctionelles intégrales. Acta Math. Viet-\noindentnam, 7 , 139-170 (1982). · Zbl 0557.49005 [4] Castaing, C., and Valadier, M.: Equations différentielles multivoques dans les éspaces vectoriels localement convexes. Rev. Française Informat. Recherche Opérationelles, 3 , 3-16 (1969). · Zbl 0186.21004 [5] Castaing, C., and Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977). · Zbl 0346.46038 [6] Ioffe, A. D.: On lower semicontinuity of integral functionals I. SIAM J. Control Optim., 15 , 521-538 (1977). · Zbl 0361.46037 · doi:10.1137/0315035 [7] Komura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan, 19 , 493-507 (1967). · Zbl 0163.38302 · doi:10.2969/jmsj/01940493 [8] Maruyama, T.: On a multi-valued differential equation: an existence theorem. Proc. Japan Acad., 60A , 161-164 (1984). · Zbl 0549.49006 · doi:10.3792/pjaa.60.161 [9] Maruyama, T.: Variational problems governed by a multi-valued differential equation. Proc. Japan Acad., 60A , 212-214 (1984). · Zbl 0549.49007 · doi:10.3792/pjaa.60.212 [10] Maruyama, T.: Weak convergence theorem in Sobolev spaces with application to Filippov’s evolution equations. Proc. Japan Acad., 66A , 217-221 (1990). · Zbl 0728.49004 · doi:10.3792/pjaa.66.217 [11] Szep, A.: Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Studia Sci. Math. Hungar., 6 , 197-203 (1971). · Zbl 0238.34100 [12] Tatcishi, H.: Nonconvex-valued differential inclusions in a separable Hilbert space. Proc. Japan Acad., 68A , 296-301 (1992). · Zbl 0789.34019 · doi:10.3792/pjaa.68.296 [13] Valadier, M.: Young Measures (ed. Cellina, A.). Methods of Nonconvex Analysis, Springer, Berlin-Heidelberg-New York (1990). · Zbl 0716.34059 · doi:10.1007/BFb0084935 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.