[1] |
Boyd, J. P.: Equatorial solitary waves, part II: Envelope solitons. J. phys. Oceangr. 13, 428-449 (1983) |

[2] |
G.-Y. Chen, J.P. Boyd, Nonlinear wave packets of equatorial Kelvin waves, Dyn. Atmos. Oceans, 2000, submitted for publication. · Zbl 1206.76009 |

[3] |
Dysthe, K. B.: Note on a modification to the nonlinear Schrödinger equations and their solutions. Proc. R. Soc. London, ser. A 369, 105-114 (1979) · Zbl 0429.76014 |

[4] |
Hogan, S. J.: The fourth-order evolution equation for deep-water gravity-capillary waves. Proc. R. Soc. London, ser. A 402, 359-372 (1985) · Zbl 0593.76029 |

[5] |
Johnson, R. S.: Nonlinear, strongly dispersive water waves in arbitrary shear. Proc. R. Soc. London, ser. A 338, 101-114 (1976) |

[6] |
R.S. Johnson, A modern introduction to the mathematical theory of water waves, in: Cambridge Texts in Applied Mathematics, Vol. 18, Cambridge University Press, Cambridge, 1997. · Zbl 0892.76001 |

[7] |
J. Kevorkian, J.D. Cole, Multiple Scale and Singular Perturbation Methods, Springer, New York, 1996. · Zbl 0846.34001 |

[8] |
Marshall, H. G.; Boyd, J. P.: Solitons in a continuously stratified equatorial ocean. J. phys. Oceanogr. 17, 1016-1031 (1987) |

[9] |
Stiassnie, M.: Note on the modified nonlinear Schrödinger equation for deep water waves. Wave motion 6, 431-433 (1984) · Zbl 0565.76020 |

[10] |
Tracy, E. R.; Larson, J. W.; Osborne, A. R.; Bergamasco, L.: On the nonlinear Schrödinger limit of the Korteweg--de Vries equation. Phys. D 32, 83-106 (1988) · Zbl 0697.35125 |

[11] |
E.R. Tracy, J.W. Larson, A.R. Osborne, L. Bergamasco, The relationship between the spectral theories for the periodic Kortewegde Vries and nonlinear Schrödinger equations, in: R. Osborne (Ed.), Nonlinear Topics of Ocean Physics, Fermi Summer School, Course LIX, North-Holland, Amsterdam, 1991, pp. 769--825. |

[12] |
G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974. · Zbl 0373.76001 |