×

Beneath the noise, chaos. (English) Zbl 0980.62085

Summary: The problem of extracting a signal \(x_n\) from a noise-corrupted time series \(y_n=x_n +e_n\) is considered. The signal \(x_n\) is assumed to be generated by a discrete-time, deterministic, chaotic dynamical system \(F\), in particular, \(x_n=F^n (x_0)\), where the initial point \(x_0\) is assumed to lie in a compact hyperbolic \(F\)-invariant set.
It is shown that (1) if the noise sequence \(e_n\) is Gaussian then it is impossible to consistently recover the signal \(x_n\), but (2) if the noise sequence consists of i.i.d. random vectors uniformly bounded by a constant \(\delta>0\), then it is possible to recover the signal \(x_n\) provided \(\delta< 5\Delta\), where \(\Delta\) is a separation threshold for \(F\). A filtering algorithm for the latter situation is presented.

MSC:

62M20 Inference from stochastic processes and prediction
37M10 Time series analysis of dynamical systems
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] ABARBANEL, H. 1996. Analysis of Observed Chaotic Data. Springer, New York. · Zbl 0890.93006
[2] BOWEN, R. 1975. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math. 470. Springer, Berlin. · Zbl 0308.28010
[3] DAVIES, M. 1992. Noise reduction schemes for chaotic time series. Phys. D 79 174 192. · Zbl 0888.58032 · doi:10.1016/S0167-2789(05)80005-3
[4] DEVANEY, R. 1986. An Introduction to Chaotic Dynamical Systems. Benjamin and Cummings, Menlo Park, CA. · Zbl 0632.58005
[5] ECKMANN, J.-P. and RUELLE, D. 1985. Ergodic theory of chaos and strange attractors. Rev. Modern Phys. 57 617 656. · Zbl 0989.37516 · doi:10.1103/RevModPhys.57.1115
[6] ECKMANN, J.-P., KAMPHORST, S. O., RUELLE, D. and CILIBERTO, S. 1986. Lyapunov exponents from times series. Phys. Rev. A 34 4971 4979. · doi:10.1103/PhysRevA.34.4971
[7] GUCKENHEIMER, J. and HOLMES, P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York. · Zbl 0515.34001
[8] HIRSCH, M. 1976. Differential Topology. Springer, New York. · Zbl 0356.57001
[9] KOSTELICH, E. and SCHREIBER, T. 1993. Noise reduction in chaotic time-series data: a survey of common methods. Phys. Rev. E 48 1752 1763. · doi:10.1103/PhysRevE.48.1752
[10] KOSTELICH, E. and YORKE, J. 1990. Noise reduction finding the simplest dynamical system consistent with the data. Phys. D 41 183 196. · Zbl 0705.58036 · doi:10.1016/0167-2789(90)90121-5
[11] KUO, H. H. 1975. Gaussian Measures in Banach Spaces. Lecture Notes in Math. 463. Springer, Berlin. · Zbl 0306.28010 · doi:10.1007/BFb0082007
[12] LALLEY, S. 1997. More noise, more chaos. Unpublished manuscript.
[13] BENEATH THE NOISE, CHAOS 479
[14] LEDRAPPIER, F. 1976. Sur la condition de Bernoulli faible et ses applications. Theorie Érgodique. Lecture Notes in Math. 532 152 159. Springer, Berlin. · Zbl 0394.28011
[15] MOSER, J. 1973. Stable and Random Motions in Dynamical Systems. Princeton Univ. Press. · Zbl 0271.70009
[16] SAUER, T. 1992. A noise reduction method for signals from nonlinear systems. Phys. D 58 193 201. · Zbl 1194.94137 · doi:10.1016/0167-2789(92)90108-Y
[17] SHUB, M. 1987. Global Stability of Dynamical Systems. Springer, New York. · Zbl 0606.58003
[18] SMALE, S. 1963. Diffeomorphisms with many periodic points. In Differential and CombinaZ. torial Topology S. S. Cairns, ed. Princeton Univ. Press. · Zbl 0142.41103
[19] WEST LAFAYETTE, INDIANA 47907 E-MAIL: lalley@stat.purdue.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.