zbMATH — the first resource for mathematics

On the theory of fourth-order tensors and their applications in computational mechanics. (English) Zbl 0980.74006
Summary: We give a mathematical treatment of fourth-order tensors in the framework of a complete theory involving a set of notations and definitions, a tensor operation algebra, differentiation rules, eigenvalue problems, applications of fourth-order tensors to isotropic tensor functions and some other relevant aspects. A tensor is understood as an invariant quantity with respect to any co-ordinate system transformation which justifies the use of absolute notation preferred in this work. As the most important application of fourth-order tensors, we study elastic moduli in a material, and give a spatial description for various hyperelastic models.

74B99 Elastic materials
15A72 Vector and tensor algebra, theory of invariants
74S99 Numerical and other methods in solid mechanics
Full Text: DOI
[1] Başar, Y.; Itskov, M., Finite element formulation of the ogden material model with application to rubber-like shells, Int. J. numer. methods engrg., 42, 1279-1305, (1998) · Zbl 0912.73052
[2] J. Betten, Interpolations methods for tensor functions, in: X.J.R. Avula et al. (Eds.), Mathematical Modelling in Science and Technology, Pergamon Press, New York, 1984 · Zbl 0546.41004
[3] J. Betten, Invariants of fourth-order tensors, in: J.P. Boehler (Ed.), Applications of Tensor Functions in Solid Mechanics, CISM courses and lectures No. 292, Wien, 1987, pp. 171-186 · Zbl 0634.73006
[4] Betten, J., Tensorrechnung für ingenieure, (1987), Teubner Stuttgart
[5] Betten, J.; Helisch, W., Irreduzible invarianten eines tensors vierter stufe, Z. angew. math. mech., 72, 45-57, (1992) · Zbl 0762.15014
[6] Betten, J.; Helisch, W., Simultaninvarianten bei systemen zwei- und vierstufiger tensoren, Z. angew. math. mech., 75, 753-759, (1995) · Zbl 0859.15020
[7] Betten, J.; Helisch, W., Tensorgeneratoren bei systemen von tensoren zweiter und vierter stufe, Z. angew. math. mech., 76, 87-92, (1996) · Zbl 0872.15022
[8] Chadwick, P.; Ogden, R.W., On the definition of the elastic moduli, Arch. rat. mech. anal., 44, 41-53, (1971) · Zbl 0229.73007
[9] Chadwick, P.; Ogden, R.W., A theorem of tensor calculus and its application to isotropic elasticity, Arch. rat. mech. anal., 44, 54-68, (1971) · Zbl 0229.73008
[10] P.G. Ciarlet, Mathematical elasticity, Volume I: Three-dimensional elasticity, North-Holland, Amsterdam, 1988 · Zbl 0648.73014
[11] Cowin, S.C.; Mehrabadi, M.M., On the structure of the linear anisotropic elastic symmetries, J. mech. phys. solids., 40, 1459-1472, (1992) · Zbl 0837.73013
[12] Dluzewski, P.; Rodzik, P., Elastic eigenstates in finite element modelling of large anisotropic elasticity, Comput. methods appl. mech. engrg., 160, 325-335, (1988) · Zbl 0942.74072
[13] T.C. Doyle, J.L. Ericksen, Nonlinear elasticity, Advances in Applied Mechanics IV, Academic Press, New York, 1956
[14] M.E. Gurtin, The linear theory of elasticity. in: S. Flugge (Ed.), Handbuch der Physik A, Vol. VI a/2, Springer, Berlin, 1972
[15] Gurtin, M.E., A short proof of the representation theorem for isotropic, linear stress-strain relations, J. elasticity, 4, 243-245, (1974) · Zbl 0288.73020
[16] M. Itskov, The derivative with respect to a tensor: some theoretical aspects and applications, Z. Angew. Math. Mech., in press · Zbl 1002.15031
[17] Jaric, J.P., On the representation of symmetric isotropic 4-tensors, J. elasticity, 51, 73-79, (1998) · Zbl 0924.15026
[18] Kaliske, M.; Rothert, H., On the finite element implementation of rubber-like materials at finite strains, Engrg. comput., 14, 216-232, (1997) · Zbl 0983.74561
[19] Knowles, J.K., On the representation of the elasticity tensor for isotropic materials, J. elasticity, 39, 175-180, (1995) · Zbl 0852.73020
[20] Martins, L.C.; Podio-Guidugli, P., A new proof of the representation theorem for isotropic linear constitutive relations, J. elasticity, 8, 319-322, (1978)
[21] Mehrabadi, M.M.; Cowin, S.C., Eigentensors of linear anisotropic elastic materials, Quart. J. mech. appl. math., 43, 15-41, (1990) · Zbl 0698.73002
[22] Miehe, C., Computation of isotropic tensor functions, Commun. numer. methods engrg., 9, 889-896, (1993) · Zbl 0796.65059
[23] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int. J. num. methods engrg., 37, 1981-2004, (1994) · Zbl 0804.73067
[24] Miehe, C., Comparison of two algorithms for the computation of fourth-order isotropic tensor functions, Comput. struct., 66, 37-43, (1998) · Zbl 0929.74128
[25] Mooney, M., A theory of elastic deformations, J. appl. phys., 11, 582-592, (1940) · JFM 66.1021.04
[26] Morman, K.N., The generalised strain measure with application to non homogeneous deformations in rubber-like solids, J. appl. mech., 53, 726-728, (1986)
[27] R.W. Ogden, Non-linear Elastic Deformations, Ellis Horwood Series in Mathematics and its Applications, Chichester, 1984 · Zbl 0541.73044
[28] Rychlewski, J., On the Hooke’s law, Prikl. matem. mekhan., 48, 303-314, (1984) · Zbl 0581.73015
[29] J. Rychlewski, Symmetry of tensor functions and spectrum theorem (in Russian), Uspechi Mechaniki (Advances in Mechanics) 11(3) (1988) 77-124
[30] Rychlewski, J., Unconventional approach to linear elasticity, Arch. mech., 47, 149-171, (1995) · Zbl 0836.73010
[31] Pericak-Spector, K.A.; Spector, S.J., On the representation theorem for linear isotropic tensor functions, J. elasticity, 39, 181-185, (1995) · Zbl 0852.73013
[32] Sansour, C., On the spatial description in elasticity and the doyle – ericksen formula, Comput. methods appl. mech. engrg., 107, 239-249, (1993) · Zbl 0803.73018
[33] Simo, J.C.; Marsden, J.E., On the rotated stress tensor and the material version of the doyle – ericksen formula, Arch. rat. mech. anal., 86, 213-231, (1984) · Zbl 0567.73003
[34] Simo, J.C.; Taylor, R.L., Quasi-incompressible finite elasticity in principal stretches. continuum basis and numerical algorithms, Comput. methods appl. mech. engrg., 85, 273-310, (1991) · Zbl 0764.73104
[35] Sutcliffe, S., Spectral decomposition of the elastic tensor, J. appl. mech., 59, 762-773, (1992) · Zbl 0770.73013
[36] Ting, T.C.T., Determination of C1/2,{\bfc}−1/2 and more general isotropic tensor functions of {\bfc}, J. elasticity, 15, 319-323, (1985) · Zbl 0587.73002
[37] Ting, T.C.T., Invariants of anisotropic elastic constants, Quart. J. appl. mech., 40, 3, 431-448, (1987) · Zbl 0626.73009
[38] Trostel, R., Vektor- und tensoralgebra, (1993), Vieweg Wiesbaden · Zbl 0785.15015
[39] C. Truesdell, W. Noll, The nonlinear field theories of mechanics, in: S. Flügge (Ed.), Handbuch der Physik, Vol. III/3, Springer, Berlin, 1965 · Zbl 0779.73004
[40] Valanis, K.C.; Landel, R.F., The strain-energy function of a hyperelastic material in terms of the extension ratios, J. appl. phys., 38, 2997-3002, (1967)
[41] Walpole, L.J., Fourth-rank tensors of the thirty-two crystal classes: multiplication tables, Proc. R. soc. lond., A391, 149-179, (1984) · Zbl 0521.73005
[42] Zheng, Q.-S.; Betten, J., On the tensor function representations of 2nd-order and 4th-order tensors, Part I. Z. angew. math. mech., 75, 269-281, (1995) · Zbl 0832.73003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.