×

Variable structure exponential stabilization of chained systems based on the extended nonholonomic integrator. (English) Zbl 0980.93067

Summary: A new variable structure control strategy for exponentially stabilizing chained systems is presented based on the extended nonholonomic integrator model, the discontinuous coordinate transformation and the “reaching law method” in variable structure control design. The proposed approach converts the stabilization problem of an \(n\)-dimensional chained system into the pole-assignment problem of an \((n-3)\)-dimensional linear time-invariant system and consequently simplifies the stabilization controller design of nonholonomic chained systems.

MSC:

93D15 Stabilization of systems by feedback
70F25 Nonholonomic systems related to the dynamics of a system of particles
93B12 Variable structure systems
93B17 Transformations
93B55 Pole and zero placement problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Astolfi, Exponential stabilization of a car-like vehicle, Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, pp. 1391-1396.; A. Astolfi, Exponential stabilization of a car-like vehicle, Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, pp. 1391-1396.
[2] Astolfi, A., Discontinuous control of nonholonomic systems, Systems Control Lett., 27, 31-45 (1996) · Zbl 0877.93107
[3] A. Astofi, Discontinuous control of the Brockett integrator, Proceedings of the 36th Conference on Decision and Control, San Diego, CA, 1997, pp. 4334-4339.; A. Astofi, Discontinuous control of the Brockett integrator, Proceedings of the 36th Conference on Decision and Control, San Diego, CA, 1997, pp. 4334-4339.
[4] A.M. Bloch, S. Drakunov, Stabilization of a nonholonomic system via sliding modes, Proceedings of the 33rd Conference on Decision and Control, Orlando, FL, 1994, pp. 2961-2963.; A.M. Bloch, S. Drakunov, Stabilization of a nonholonomic system via sliding modes, Proceedings of the 33rd Conference on Decision and Control, Orlando, FL, 1994, pp. 2961-2963.
[5] A.M. Bloch, S. Drakunov, Tracking in nonholonomic dynamic systems via sliding modes, Proceedings of the 34th Conference on Decision and Control, 1995, pp. 2103-2106.; A.M. Bloch, S. Drakunov, Tracking in nonholonomic dynamic systems via sliding modes, Proceedings of the 34th Conference on Decision and Control, 1995, pp. 2103-2106.
[6] Bloch, A. M.; Drakunov, S., Stabilization and tracking in the nonholonomic integrator via sliding modes, Systems Control Lett., 29, 91-99 (1996) · Zbl 0866.93085
[7] Bloch, A. M.; Reyhanoglu, M.; McClamroch, N. H., Control and stabilization of nonholonomic dynamic systems, IEEE Trans. Automat. Control, 37, 1746-1757 (1992) · Zbl 0778.93084
[8] R.W. Brockett, Asymptotic stability and feedback stabilization, in: R.W. Brockett, R.S. Hillman, H.J. Sussmann (Eds.), Differential Geometry Control Theory, Birkhäuser, Boston, 1983.; R.W. Brockett, Asymptotic stability and feedback stabilization, in: R.W. Brockett, R.S. Hillman, H.J. Sussmann (Eds.), Differential Geometry Control Theory, Birkhäuser, Boston, 1983. · Zbl 0528.93051
[9] C. Canudas de Wit, H. Berghuis, H. Nijmeijer, Practical stabilization of nonlinear systems in chained form, Proceedings of the 33rd Conference on Decision and Control, Orlando, FL, 1994, pp. 3475-3480.; C. Canudas de Wit, H. Berghuis, H. Nijmeijer, Practical stabilization of nonlinear systems in chained form, Proceedings of the 33rd Conference on Decision and Control, Orlando, FL, 1994, pp. 3475-3480.
[10] Gao, W.; Hung, J. C., Variable structure control of nonlinear systems: a new approach, IEEE Trans. Ind. Electron., 40, 45-55 (1993)
[11] H. Gartner, A. Astolfi, Stability study of a fuzzy controlled mobile robot, Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, 1996, pp. 1121-1126.; H. Gartner, A. Astolfi, Stability study of a fuzzy controlled mobile robot, Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, 1996, pp. 1121-1126.
[12] J. Guldner, V.I. Utkin, Stabilization of nonholonomic mobile robots using Lyapunov functions for navigation and sliding mode control, Proceedings of the 33rd Conference on Decision and Control, Orlando, FL, 1994, pp. 2967-2972.; J. Guldner, V.I. Utkin, Stabilization of nonholonomic mobile robots using Lyapunov functions for navigation and sliding mode control, Proceedings of the 33rd Conference on Decision and Control, Orlando, FL, 1994, pp. 2967-2972.
[13] J.P. Hespanha, Stabilization of nonholonomic integrators via logic-based switching, Proceedings of the 1996 IFAC World Congress, 1996, Sydney, Australia, pp. 467-472.; J.P. Hespanha, Stabilization of nonholonomic integrators via logic-based switching, Proceedings of the 1996 IFAC World Congress, 1996, Sydney, Australia, pp. 467-472.
[14] Hung, J. Y.; Gao, W.; Hung, J. C., Variable structure control: a survey, IEEE Trans. Ind. Electron., 40, 2-22 (1993)
[15] Jiang, Z. P., Iterative design of time-varying stabilizers for multi-input systems in chained form, Systems Control Lett., 28, 255-262 (1996) · Zbl 0866.93084
[16] H. Khnennouf, C. Canudas de Wit, Quasi-exponential stabilizers for nonholonomic systems, Proceedings of the 1996 IFAC World Congress, Sydney, Australia, 1996, pp. 49-54.; H. Khnennouf, C. Canudas de Wit, Quasi-exponential stabilizers for nonholonomic systems, Proceedings of the 1996 IFAC World Congress, Sydney, Australia, 1996, pp. 49-54.
[17] Kolmanovsky, I.; McClamroch, N. H., Development in nonholonomic control problems, IEEE Control System Mag., 15, 20-36 (1995)
[18] M’closkey, R. T.; Murray, R., Exponential stabilization of driftless nonlinear control systems via time-varying homogeneous feedback, IEEE Trans. Automat. Control, 42, 614-628 (1997) · Zbl 0882.93066
[19] Murray, R. M.; Sastry, S. S., Nonholonomic motion planning: steering using sinusoids, IEEE Trans. Automat. Control, 38, 700-716 (1993) · Zbl 0800.93840
[20] G. Oriolo, S. Panzieri, G. Ulivi, Cyclic learning control of chained-form systems with application to car-like robotics, Proceedings of the 1996 IFAC World Congress, Sydney, Australia, 1996, pp. 187-192.; G. Oriolo, S. Panzieri, G. Ulivi, Cyclic learning control of chained-form systems with application to car-like robotics, Proceedings of the 1996 IFAC World Congress, Sydney, Australia, 1996, pp. 187-192.
[21] Pomet, J. B., Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems Control Lett., 18, 147-158 (1992) · Zbl 0744.93084
[22] Samson, C., Control of chained systems: application to path following and time-varying point-stabilization of mobile robots, IEEE Trans. Automat. Control, 40, 64-77 (1995) · Zbl 0925.93631
[23] H.S. Shim, J.H. Kim, K. Koh, Variable structure control of nonholonomic wheeled mobile robot, Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, pp. 1694-1699.; H.S. Shim, J.H. Kim, K. Koh, Variable structure control of nonholonomic wheeled mobile robot, Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 1995, pp. 1694-1699.
[24] Sordalen, O. J.; Egeland, O., Exponential stabilization of nonholonomic chained systems, IEEE Trans. Automat. Control, 40, 35-49 (1995) · Zbl 0828.93055
[25] A. Tayebi, M. Tadjine, A. Rachid, Invariant manifold approach for the stabilization of nonholonomic systems in chained form: application to a car-like mobile robot, Proceedings of the 36th Conference on Decision and Control, San Diego, CA, 1997, pp. 4038-4043.; A. Tayebi, M. Tadjine, A. Rachid, Invariant manifold approach for the stabilization of nonholonomic systems in chained form: application to a car-like mobile robot, Proceedings of the 36th Conference on Decision and Control, San Diego, CA, 1997, pp. 4038-4043.
[26] Teel, A. R.; Murray, R.; Walsh, G. C., Nonholonomic control systems: from steering to stabilization with sinusoids, Internat. J. Control, 62, 849-870 (1995) · Zbl 0837.93062
[27] Utkin, V. I., Sliding Modes and Their Application in Variable Structure Systems (1978), MIT Publishers: MIT Publishers Moscow · Zbl 0398.93003
[28] S.Y. Wang, W. Huo, W.L. Xu, Order-reduced stabilization design of nonholonomic chained systems based on new canonical forms, Proceedings of the 38th Conference on Decision and Control, Phoenix, AZ, 1999, pp. 3464-3469.; S.Y. Wang, W. Huo, W.L. Xu, Order-reduced stabilization design of nonholonomic chained systems based on new canonical forms, Proceedings of the 38th Conference on Decision and Control, Phoenix, AZ, 1999, pp. 3464-3469.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.