Le, Maohua An exponential Diophantine equation. (English) Zbl 0981.11013 Bull. Aust. Math. Soc. 64, No. 1, 99-105 (2001). The author gives all the positive integer solutions \((x,y,m,n)\) of the equation \[ x^2+p^{2m}=y^n, \quad \text{\(x\), \(y\), \(m\), \(n\in {\mathbb N}\), \(\gcd(x,y)=1\), \(n>2\)} \] satisfying \(2 |n\) or \(2\nmid n\) and \(p\not\equiv (-1)^{(p-1)/2} \pmod{4n}\), where \(p\) is a prime number \({}>3\). The proof combines many results on several Diophantine equations. In particular, it uses a new deep result of Bilu-Hanrot-Voutier on primitive divisors of Lucas and Lehmer numbers. Reviewer: Maurice Mignotte (Strasbourg) Cited in 5 Documents MSC: 11D61 Exponential Diophantine equations 11B39 Fibonacci and Lucas numbers and polynomials and generalizations Keywords:exponential Diophantine equations PDF BibTeX XML Cite \textit{M. Le}, Bull. Aust. Math. Soc. 64, No. 1, 99--105 (2001; Zbl 0981.11013) Full Text: DOI OpenURL References: [1] Le, Acta Arith. 82 pp 17– (1997) [2] Cohn, Arch. Math. (Basel) 59 pp 341– (1992) · Zbl 0770.11019 [3] DOI: 10.1155/S0161171298000866 · Zbl 0905.11017 [4] DOI: 10.2307/2153457 · Zbl 0832.11009 [5] Störmer, Bull. Soc. Math. France 27 pp 160– (1899) [6] Le, Chinese Sci. Bull. 2 pp 1515– (1997) [7] Mordell, Diophantine equations (1969) [8] Luca, Bull. Austral. Math. Soc. 61 pp 241– (2000) [9] Ljunggren, Tolfte Skandinaviska Matematikerkongressen, Lund pp 188– (1954) [10] DOI: 10.2307/2369308 · JFM 10.0134.05 [11] Ljunggren, Avh. Norske Vid. Akad. Oslo 5 pp 1– (1942) [12] Nagell, Nova Acta Soc. Sci. Upsal. (4) 16 pp 1– (1954) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.