zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Strong law of large numbers for Markov chains field on a Bethe tree. (English) Zbl 0981.60064
Summary: We study the strong law of large numbers on the frequencies of states for a Markov chain field on a Bethe tree. In the proof, we apply a new technique in the study of strong limit theorems.

MSC:
60J10Markov chains (discrete-time Markov processes on discrete state spaces)
60F15Strong limit theorems
WorldCat.org
Full Text: DOI
References:
[1] Benjamini, I.; Peres, Y.: Markov chains indexed by trees. Ann. probab. 22, 219-243 (1994) · Zbl 0793.60080
[2] Berger, T.; Ye, Z.: Entropic aspects of random fields on trees. IEEE trans. Inform. theory 36, No. 5, 1006-1018 (1990) · Zbl 0738.60100
[3] Liu, W.; Yang, W. G.: A limit theorem for the entropy density of nonhomogeneous Markov information source. Statist. probab. Lett. 22, 295-301 (1995) · Zbl 0833.60034
[4] Liu, W.; Yang, W. G.: An extension of Shannon--mcmillan theorem and some limit properties for nonhomogeneous Markov chains. Stochastic. process. 61, 129-146 (1996) · Zbl 0861.60042
[5] Spitzer, F.: Markov random fields on an infinite tree. Ann. probab. 3, 387-398 (1975) · Zbl 0313.60072
[6] Ye, Z.; Berger, T.: Ergodic regularity and asymptotic equipartition property of random fields on trees. J. combin. Inform. system sci. 21, No. 2, 157-184 (1996) · Zbl 0953.94008