×

zbMATH — the first resource for mathematics

Convergence of a splitting method of high order for reaction-diffusion systems. (English) Zbl 0981.65107
Author’s summary: We prove the convergence of a splitting scheme of high-order for a reaction-diffusion system of the form \[ u_t- M\Delta u+ F(u)= 0, \] where \(M\) is an \(m\times m\) matrix whose spectrum is included in \(\{\text{Re }z> 0\}\). This scheme is obtained by applying a Richardson extrapolation to a Strang formula.

MSC:
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Stéphane Descombes and Michelle Schatzman, Directions alternées d’ordre élevé en réaction-diffusion, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 11, 1521 – 1524 (French, with English and French summaries). · Zbl 0844.35046
[2] Stéphane Descombes and Michelle Schatzman, On Richardson extrapolation of Strang formula for reaction-diffusion equations, Équations aux dérivées partielles et applications, Gauthier-Villars, Éd. Sci. Méd. Elsevier, Paris, 1998, pp. 429 – 452. · Zbl 0911.35059
[3] Boun Oumar Dia and Michelle Schatzman, Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 3, 343 – 383 (French, with English and French summaries). · Zbl 0853.47024
[4] Boun Oumar Dia and Michelle Schatzman, An estimate of the Kac transfer operator, J. Funct. Anal. 145 (1997), no. 1, 108 – 135. · Zbl 0919.47031
[5] B. O. Dia, M. Schatzman, On the order of extrapolation of integration formulæ, Preprint no 275, Equipe d’Analyse Numérique Lyon-Saint Etienne, UMR 5585, 1998.
[6] Piero de Mottoni and Michelle Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1533 – 1589 (English, with English and French summaries). · Zbl 0840.35010
[7] Daniel Goldman and Lawrence Sirovich, A novel method for simulating the complex Ginzburg-Landau equation, Quart. Appl. Math. 53 (1995), no. 2, 315 – 333. · Zbl 0826.76033
[8] Daniel Goldman and Tasso J. Kaper, \?th-order operator splitting schemes and nonreversible systems, SIAM J. Numer. Anal. 33 (1996), no. 1, 349 – 367. · Zbl 0849.65070
[9] B. Helffer, Around the transfer operator and the Trotter-Kato formula, Partial differential operators and mathematical physics (Holzhau, 1994) Oper. Theory Adv. Appl., vol. 78, Birkhäuser, Basel, 1995, pp. 161 – 174. · Zbl 0835.47050
[10] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. · Zbl 0456.35001
[11] Takashi Ichinose and Satoshi Takanobu, Estimate of the difference between the Kac operator and the Schrödinger semigroup, Comm. Math. Phys. 186 (1997), no. 1, 167 – 197. · Zbl 0912.47025
[12] Q. Sheng, Solving linear partial differential equations by exponential splitting, IMA J. Numer. Anal. 9 (1989), no. 2, 199 – 212. · Zbl 0676.65116
[13] Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. · Zbl 0807.35002
[14] Gilbert Strang, Accurate partial difference methods. I. Linear Cauchy problems, Arch. Rational Mech. Anal. 12 (1963), 392 – 402. · Zbl 0113.32303
[15] Gilbert Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), 506 – 517. · Zbl 0184.38503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.