zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Neural networks for HREM image analysis. (English) Zbl 0981.68745
Summary: We present a new neural network-based method of image processing for determining the local composition and thickness of III--V semiconductors in high resolution electron microscope images. This is of great practical interest as these parameters influence the electrical properties of the semiconductor. Neural networks suppress correlated noise from amorphous object covering and distinguish between variations of sample thickness and semiconductor composition.

68U99Computing methodologies
68U10Image processing (computing aspects)
Full Text: DOI
[1] Kleber, W.; Bautsch, H.; Bohm, J.: Einführung in die kristallographie. (1990)
[2] Ourmazd, A.; Baumann, F. H.; Bode, M.; Kim, Y.: Quantitative chemical lattice imaging: theory and practice. Ultramicroscopy 34, 237-255 (1990)
[3] Stenkamp, D.; Jäger, W.: Compositional and structural characterization of sixge1-x alloys and heterostructures by high-resolution transmission electron microscopy. Ultramicroscopy 50, 321-354 (1993)
[4] Kisielowski, C.; Schwander, P.; Baumann, F. H.; Seibt, M.; Kim, Y.; Ourmazd, A.: An approach to quantitative high resolution transmission electron microscopy of crystalline materials. Ultramicroscopy 58, 131-155 (1995)
[5] Hillebrand, R.: Fuzzy logic approaches to the analysis of HREM images of III--V compounds. Journal of microscopy 190, 61-72 (1998)
[6] R. Hillebrand, P.P. Wang, U. Gösele. Fuzzy logic applied to physics of III--V compounds, in: Proceedings of the Workshop on Breakthrough Opportunities for Fuzzy Logic, Tokyo, 1996, pp. 77--78
[7] Hillebrand, R.; Wang, P. P.; Gösele, U.: A fuzzy logic approach to edge detection in HREM images of III--V crystals. Information sciences -- applications 93, 321-338 (1996)
[8] R. Hillebrand, P.P. Wang, U. Gösele, Fuzzy logic image processing applied to electron micrographs of semiconductors, in: P. Wang (ed.), Proceedings of the Third Joint Conference on Information Sciences`97, Duke University, Durham, I, 1997, pp. 55--57
[9] H. Kirschner, R. Hillebrand, Neuronale Netze zur Kompositionsbestimmung von III--V Heterostrukturen in HREM Abbildungen, Optik (Suppl.) 1997, 74
[10] H. Kirschner, HREM-Bildanalyse von III--V-Halbleiter-Schichtstrukturen durch quantitativen Bildvergleich experiment -- simulation, Master Thesis, Martin-Luther-Universität Halle--Wittenberg, January 2000
[11] Stadelmann, P. A.: EMS -- a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131-146 (1987)
[12] P.A. Stadelmann, Image calculation techniques, Technical report, EPFL Lausanne, 1995
[13] Reimer, L.: Transmission electron microscopy. (1989)
[14] M. Riedmiller, H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, in: H. Ruspini (Ed.), Proceedings of the IEEE International Conference on Neural Networks, San Francisco, 1993, pp. 586--591
[15] H. Kirschner, Architekturabhängiges Lern- und Anpassungsverhalten bei Neuronalen Mehrschichtnetzen, Master Thesis, Institut für angewandte Physik der Universität Regensburg, 1997
[16] Jollife, I. T.: Principal component analysis. (1986)