zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Indirect adaptive fuzzy sliding mode control. II: Parameter projection and supervisory control. (English) Zbl 0981.93041
In this paper and its companion paper [part I, Fuzzy Sets Syst. 122, No. 1, 21-30 (2001; Zbl 0981.93040)]above, SISO $n$-th order nonlinear systems are considered. Adaptive fuzzy techniques are merged with sliding mode control design. Two fuzzy systems approximate the system function in the equivalent control part and the switching control. The performance of the sliding surface and of Lyapunov synthesis are evaluated. Simulation results are presented.

93C42Fuzzy control systems
93B12Variable structure systems
Full Text: DOI
[1] R.A. DeCarlo, S.H. Zak, G.O. Matthews, Variable structure control of nonlinear multivariable systems: a tutorial, Proceeding of the IEEE, Vol. 76, No. 3, March 1988, pp. 212--232.
[2] Hung, J. Y.; Gao, W. B.; Hung, J. C.: Variable structure controla survey. IEEE trans. Ind. electron. 40, No. 1, 2-22 (1993)
[3] Ioannou, P. A.; Sun, J.: Robust adaptive control. (1994) · Zbl 0747.93048
[4] Kim, S. W.; Lee, J. J.: Design of a fuzzy controller with fuzzy sliding surface. Fuzzy sets and systems 71, 359-367 (1995)
[5] Palm, R.; Driankov, D.; Hellendoorn, H.: Model based fuzzy control: fuzzy gain schedulers and sliding model fuzzy control. (1997) · Zbl 0881.93003
[6] Passino, K. M.: Fuzzy control. (1998) · Zbl 0900.93165
[7] Slotine, J. J. E.: Sliding controller design for non-linear systems. Internat. J. Control 38, No. 2, 465-492 (1984) · Zbl 0519.93036
[8] Slotine, J. J. E.; Li, W. P.: Applied non-linear control. (1991) · Zbl 0753.93036
[9] Utkin, V. I.: Variable structure systems with sliding modes. IEEE trans. Automat. control 22, No. 2, 212-222 (1977) · Zbl 0382.93036
[10] Wang, J.; Rad, A. B.; Chan, P. T.: Indirect adaptive fuzzy sliding model control -- part ifuzzy switching. Fuzzy sets and systems 122, 21-30 (2001) · Zbl 0981.93040
[11] Wang, L. X.: A course in fuzzy systems and control. (1997) · Zbl 0910.93002
[12] Wang, L. X.: Adaptive fuzzy systems and control: designing and stability analysis. (1994)
[13] Yoo, B.; Ham, W.: Adaptive fuzzy sliding mode sliding mode control of non-linear system. IEEE trans. Fuzzy systems 6, No. 2, 315-321 (1998)