zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalizations of the concept of marginal synchronization of chaos. (English) Zbl 0982.37022
This paper is devoted to the problem of marginal synchronization of chaos. Generalized marginal synchronization in a drive-response system is defined and an example from this kind of solid-state physics is analyzed. Moreover, stability of this kind of synchronization is studied. The authors show that in drive-response systems generalized marginal synchronization is sensitive to the changes of parameters and may disappear either due to the loss of stability of the response system, or as a result of a blowout bifurcation.

MSC:
37D45Strange attractors, chaotic dynamics
37N20Dynamical systems in other branches of physics
34C28Complex behavior, chaotic systems (ODE)
37G99Local and nonlocal bifurcation theory
WorldCat.org
Full Text: DOI
References:
[1] Fujisaka, F.; Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog theor phys 69, 32-47 (1983) · Zbl 1171.70306
[2] Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems. Phys rev lett 64, 821-824 (1990) · Zbl 0938.37019
[3] González-Miranda, J. M.: Chaotic systems with a null conditional Lyapunov exponent. Phys rev E 53, R5-R8 (1996)
[4] Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.; Abarbanel, H. D. I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys rev E 51, 980-994 (1995)
[5] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaotic oscillators. Phys rev lett 76, 1804-1807 (1996)
[6] Kapitaniak, T.; Thylwe, K. -E.: Monotonic stability. Chaos, solitons & fractals 7, 1411-1415 (1996) · Zbl 1080.37514
[7] Chen Hua, Gong Xiaofeng, Li Fuli. Synchronization of chaotic neuronal oscillators. Chaos, Solitons & Fractals 1998;9:1567--74 · Zbl 0939.37051
[8] Kapitaniak, T.: Controlling chaos. Theoretical and practical methods in nonlinear dynamics. (1996) · Zbl 0883.58021
[9] Pecora, L. M.; Carroll, T. L.; Johnson, G. A.; Mar, D. J.; Heagy, J. F.: Fundamentals of synchronization in chaotic systems, concepts, and applications. Chaos 7, 520-543 (1997) · Zbl 0933.37030
[10] Parlitz, U.; Chua, L. O.; Kocarev, L.; Halle, S.; Shang, A.: Transmission of digital signals by chaotic synchronization. Int J bifurc chaos 2, 973-977 (1992) · Zbl 0870.94011
[11] Cuomo, K. M.; Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications. Phys rev lett 71, 65-68 (1993)
[12] Pérez, G.; Cerdeira, H.: Extracting messages masked by chaos. Phys rev lett 74, 1970-1973 (1995)
[13] Kocarev, L.; Parlitz, U.: General approach for chaotic synchronization with applications to communication. Phys rev lett 74, 5028-5031 (1995)
[14] Kocarev, L.; Parlitz, U.; Stojanovski, T.: An application of synchronized chaotic dynamic arrays. Phys lett A 217, 280-284 (1996) · Zbl 1298.94105
[15] Murali, K.; Lakshmann, M.: Secure communication using a compound signal from generalized synchronizable chaotic systems. Phys lett A 241, 303-310 (1998) · Zbl 0933.94023
[16] Duan CK, Yang SS, Wanli Min, Shangda Xia. Feedback control to realize and stabilize chaos synchronization. Chaos, Solitons & Fractals 1998;9:921--9 · Zbl 1047.93514
[17] Heagy, J. F.; Carroll, T. L.; Pecora, L. M.: Synchronous chaos in coupled oscillator systems. Phys rev E 50, 1874-1885 (1994)
[18] Pyragas, K.: Predictable chaos in slightly perturbed chaotic systems. Phys lett A 181, 203-210 (1993)
[19] C\breve{}enys, A.; Namajūnas, A.; Tamas\breve{}evic\breve{}ius, A.; Schneider, T.: On--off intermittency in chaotic synchronization experiment. Phys lett A 213, 259-264 (1996)
[20] Pecora, L. M.; Carroll, T. L.: Driving systems with chaotic signals. Phys rev A 44, 2374-2383 (1991)
[21] Carroll, T. L.; Pecora, L. M.: Cascading synchronized chaotic systems. Physica D 67, 126-140 (1993) · Zbl 0800.94100
[22] Rul’kov, N. F.; Volkovskii, A. R.; Rodriguez-Lozano, A.; Del Rio, E.; Velarde, M. G.: Synchronous chaotic behaviour of a response oscillator with chaotic driving. Chaos, solitons & fractals 4, 201-211 (1994) · Zbl 0795.34027
[23] Ding, M.; Ott, E.: Enhancing synchronism of chaotic systems. Phys rev E 49, R945-R948 (1994)
[24] Peng, J. H.; Ding, E. J.; Ding, M.; Yang, W.: Synchronizing hyperchaos with a scalar-transmitted signal. Phys rev lett 76, 904-907 (1996)
[25] Stojanovski, T.; Kocarev, L.; Parlitz, U.; Harris, R.: Sporadic driving of dynamical systems. Phys rev E 55, 4035-4048 (1997)
[26] Teh-Lu Liao. Adaptive synchronization of two Lorenz systems. Chaos, Solitons & Fractals 1998;9:1555--61 · Zbl 1047.37502
[27] Güémez, J.; Martín, C.; Matías, M. A.: Approach to the chaotic synchronized state of some driving methods. Phys rev E 55, 124-134 (1997)
[28] Matías, M. A.; Güémez, J.; Martín, C.: On the behavior of coupled chaotic systems exhibiting marginal synchronization. Phys lett A 226, 264-268 (1997) · Zbl 0962.37505
[29] González-Miranda, J. M.: Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving. Phys rev E 57, 7321-7324 (1998)
[30] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability and equivalence of unidirectionally coupled dynamical systems. Phys rev lett 76, 1816-1819 (1996)
[31] Abarbanel, H. D. I.; Rulkov, N. F.; Sushchik, M. M.: Generalized synchronization of chaos: the auxiliary system approach. Phys rev E 53, 4528-4535 (1996)
[32] Pyragas, K.: Weak and strong synchronization of chaos. Phys rev E 54, R4508-R4511 (1996)
[33] Pyragas, K.: On--off intermittency at the threshold of weak synchronization of chaos. Chaos, solitons & fractals 9, 337-342 (1998) · Zbl 0934.37039
[34] Kittel, A.; Parisi, J.; Pyragas, K.: Generalized synchronization of chaos in electronic circuit experiments. Physica D 112, 459-471 (1998) · Zbl 0930.37014
[35] Yang, S. S.; Duan, C. K.: Generalized synchronization in chaotic systems. Chaos, solitons & fractals 9, 1703-1707 (1998) · Zbl 0946.34040
[36] Ott, E.; Sommerer, J. C.: Blowout bifurcations: the occurrence of riddled basins and on--off intermittency. Phys lett A 188, 39-44 (1994)
[37] Ashwin, P.; Buescu, J.; Stewart, I.: Bubbling of attractors and synchronization of chaotic oscillators. Phys lett A 193, 126-139 (1994) · Zbl 0959.37508
[38] Nagai, Y.; Lai, Y.: Characterization of blowout bifurcation by unstable periodic orbits. Phys rev E 55, R1251-R1254 (1997)
[39] Venkataramani, S. C.; Hunt, B. R.; Ott, E.: Bubbling transition. Phys rev E 54, 1346-1360 (1996)
[40] Venkataramani, S. C.; Hunt, B. R.; Ott, E.: Transitions to bubbling of chaotic systems. Phys rev lett 77, 5361-5364 (1996)
[41] Kapitaniak, T.; Chua, L. O.; Zhong, G. -Q.: Experimental evidence of locally intermingled basins of attraction in coupled Chua’s circuits. Chaos, solitons & fractals 8, 1517-1522 (1997)
[42] Alexander, J. C.; Yorke, J. A.; You, Z.; Kan, I.: Riddled basins. Int J bifurc chaos 2, 795-813 (1992) · Zbl 0870.58046
[43] Ott, E.; Alexander, J. C.; Kan, I.; Sommerer, J. C.; Yorke, J. A.: The transition to chaotic attractors with riddled basins. Physica D 76, 384-410 (1994) · Zbl 0820.58043
[44] Lai, Y. -Ch.; Grebogi, C.; Yorke, J. A.; Venkataramani, S. C.: Riddling bifurcation in chaotic dynamical systems. Phys rev lett 77, 55-58 (1996)
[45] Kapitaniak, T.; Maistrenko, Yu.; Stefański, A.; Brindley, J.: Bifurcations from globally to locally riddled basins. Phys rev E 57, R6253-R6256 (1998)
[46] Heagy, J. F.; Platt, N.; Hammel, S. M.: Characterization of on--off intermittency. Phys rev E 49, 1140-1150 (1994)
[47] Platt, N.; Spiegel, E. A.; Tresser, C.: On--off intermittency: a mechanism for bursting. Phys rev lett 70, 279-282 (1993)
[48] Suhl, H.: Theory of ferromagnetic resonance at high signal powers. J phys chem solids 1, 209-227 (1957)
[49] Wiese, G.; Benner, H.: Multistability and chaos by parametric excitation of longwave modes in a YIG sphere. Z phys B 79, 119-131 (1990)
[50] Krawiecki, A.; Sukiennicki, A.: On--off intermittency and peculiar properties of attractors in a simple model of chaos in ferromagnetic resonance. Acta phys polon A, 269-281 (1995)
[51] Zakharov V, Lvov V, Starobinets SS. Turbulence of spin waves beyond their parametric excitation threshold. Usp Fiz Nauk 1974;114:609--54 (Sov Phys Usp 1975;17:896)
[52] Lim, S. P.; Huber, D. L.: Microscopic theory of spin-wave instabilities in parallel-pumped easy plane ferromagnets. Phys rev B 37, 5426-5431 (1988)
[53] Lim, S. P.; Huber, D. L.: Possible mechanism for limiting the number of modes in spin-wave instabilities in parallel pumping. Phys rev B 41, 9283-9293 (1990)
[54] Zhang, X. Y.; Suhl, H.: Theory of auto-oscillations in high-power ferromagnetic resonance. Phys rev B 38, 4893-4905 (1987)
[55] Mitsudo, S.; Mino, M.; Yamazaki, H.: Period doubling cascade and chaos at the first-order suhl instability. J magn magn mat 104--107, 1057-1058 (1992)
[56] Carroll, T. L.; Pecora, L. M.; Rachford, F. J.: Magnetostatic modes and chaos in yttrium iron garnet films. J appl phys 70, 3197-3208 (1991)