Pingel, D.; Schmelcher, P.; Diakonos, F. K. Theory and examples of the inverse Frobenius-Perron problem for complete chaotic maps. (English) Zbl 0982.37024 Chaos 9, No. 2, 357-366 (1999). Summary: The general solution of the inverse Frobenius-Perron problem considering the construction of a fully chaotic dynamical system with given invariant density is obtained for the class of one-dimensional unimodal complete chaotic maps. Some interesting connections between this general solution and the special approach via conjugation transformations are illuminated. The developed method is applied to obtain a class of maps having as invariant density the two-parametric beta-probability density function. Varying the parameters of the density a rich variety of dynamics is observed. Observables like autocorrelation functions, power spectra, and Lyapunov exponents are calculated for representatives of this family of maps and some theoretical predictions concerning the decay of correlations are tested. Cited in 19 Documents MSC: 37E05 Dynamical systems involving maps of the interval 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.) Keywords:inverse Frobenius-Perron problem; fully chaotic dynamical system; invariant density; one-dimensional unimodal complete chaotic maps; conjugation transformations; autocorrelation functions; power spectra; Lyapunov exponent; decay of correlations PDF BibTeX XML Cite \textit{D. Pingel} et al., Chaos 9, No. 2, 357--366 (1999; Zbl 0982.37024) Full Text: DOI arXiv OpenURL References: [1] DOI: 10.1007/BF01107909 · Zbl 0515.58028 [2] DOI: 10.1007/BF01107909 · Zbl 0515.58028 [3] DOI: 10.1016/0370-1573(82)90089-8 [4] DOI: 10.1016/0167-2789(80)90013-5 [5] DOI: 10.1016/0167-2789(80)90013-5 [6] DOI: 10.1103/PhysRevLett.48.7 [7] DOI: 10.1103/PhysRevLett.48.7 [8] DOI: 10.1103/PhysRevA.25.519 [9] DOI: 10.1103/PhysRevLett.59.2503 [10] DOI: 10.1016/0375-9601(95)00971-X · Zbl 1060.65525 [11] DOI: 10.1142/S0218127495001198 · Zbl 0886.58054 [12] DOI: 10.1143/ptp/86.5.991 [13] DOI: 10.1007/BF00419925 · Zbl 0518.28013 [14] DOI: 10.1063/1.527528 · Zbl 0632.60030 [15] DOI: 10.1088/0305-4470/21/24/015 · Zbl 0685.58041 [16] DOI: 10.1007/BF01060079 · Zbl 0892.58048 [17] DOI: 10.1016/0167-2789(90)90028-N · Zbl 0698.60021 [18] DOI: 10.1007/BF01312646 [19] DOI: 10.1515/zna-1977-1204 [20] DOI: 10.1143/PTP.66.1266 · Zbl 1074.37503 [21] DOI: 10.1007/BF01420570 [22] DOI: 10.1063/1.165977 · Zbl 1055.37535 [23] DOI: 10.1063/1.858440 · Zbl 0762.76046 [24] DOI: 10.1063/1.858440 · Zbl 0762.76046 [25] DOI: 10.1063/1.858440 · Zbl 0762.76046 [26] DOI: 10.1063/1.858440 · Zbl 0762.76046 [27] DOI: 10.1063/1.858440 · Zbl 0762.76046 [28] DOI: 10.1063/1.858440 · Zbl 0762.76046 [29] DOI: 10.1103/PhysRevE.53.1416 [30] DOI: 10.1007/BF02179558 · Zbl 1081.37514 [31] DOI: 10.1007/BF02765538 · Zbl 0924.58060 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.