zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. (English) Zbl 0983.35150
Authors’ abstract: A two-step shape reconstruction method for electromagnetic (EM) tomography is presented which uses adjoint fields and level sets. The inhomogeneous background permitivity distribution and the values of the primitivities in some penetrable obstacles are assumed to be known, and the number, sizes, shapes, and locations of these obstacles have to be reconstructed given noisy limited-view EM data. The main application we address in the paper is the imaging and monitoring of pollutant plumes in environmental cleanup sites based on cross-borehole EM data. The first step of the reconstruction scheme makes use of an inverse scattering sovler which recovers equivalent scattering sources for a number of experiments, and then calculates from these an approximation for the permitivity distribution in the medium. The second step uses this result as an initial guess for solving the shape reconstruction problem. A key point in this second step is the fusion of the `level set technique’ for representing the shapes of the reconstructed obstacles, and an `adjoint field technique’ for solving the nonlinear inverse problem. In each step, a forward and an adjoint Holmholtz problem are solved based on the permitivity distribution which corresponds to the latest best guess for the representing level set function. A correction for this level set function is then calculated directly by combining the results of these two runs. Numerical experiments are presented which show that the derived method is able to recover one or more objects with nontrivial shapes given noisy cross-borehole EM data.

35R30Inverse problems for PDE
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
78A46Inverse scattering problems
Full Text: DOI