zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-component Volterra and Toda type integrable equations. (English) Zbl 0983.37082
Summary: Multi-component integrable analogs related to the Jordan triple systems (JTS) are constructed for the Volterra equation. Differential-difference substitutions lead to multi-component Toda type lattices. Associated equations generalize the derivative nonlinear Schrödinger equation. Multi-component master symmetries (both partial differential and differential difference ones) and zero curvature representations for lattice equations written in terms of the superstructure Lie algebra of the JTS arise for the first time.

37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
37K60Lattice dynamics (infinite-dimensional systems)
Full Text: DOI
[1] Svinolupov, S. I.: Phys. lett. A. 135, 32 (1989)
[2] Svinolupov, S. I.: Commun. math. Phys.. 143, 559 (1992)
[3] Habibullin, I. T.; Sokolov, V. V.; Yamilov, R. I.: Multi-component integrable systems and nonassociative structures. Proc. workshop on nonlinear physics: theory and experiment, 139 (1996) · Zbl 0941.37523
[4] Shabat, A. B.; Yamilov, R. I.: Phys. lett. A. 130, 271 (1988)
[5] Shabat, A. B.; Yamilov, R. I.: Algebra i analiz. 2, No. 2, 183 (1990)
[6] Kaup, D. J.; Newell, A. C.: J. math. Phys.. 19, 798 (1978)
[7] Svinolupov, S. I.; Yamilov, R. I.: Phys. lett. A. 160, 548 (1991)
[8] Svinolupov, S. I.; Yamilov, R. I.: Teoret. mat. Fiz.. 98, No. 2, 207 (1994)
[9] Loos, O.: 3rd ed. Lecture notes in math.. Lecture notes in math. 480 (1975)
[10] Neher, E.: 3rd ed. Lecture notes in math.. Lecture notes in math. 1280 (1987)
[11] Meyberg, K.: Math. Z. B. 115, 58 (1970)
[12] Fordy, A. P.; Kulish, P. P.: Commun. math. Phys.. 89, 427 (1983)
[13] Athorn, C.; Fordy, A. P.: J. math. Phys.. 28, 2018 (1987)
[14] Fordy, A. P.: J. phys. A. 17, 1235 (1984)
[15] Fokas, A. S.; Fuchssteiner, B.: Phys. lett. A. 86, 341 (1981)
[16] Fuchssteiner, B.: Progr. theor. Phys.. 70, 1508 (1983)
[17] Fokas, A. S.: Stud. appl. Math.. 77, 253 (1987)
[18] Calogero, F.; Degasperis, A.: 3rd ed. Spectral transform and solitons: tools to solve and investigate nonlinear evolution equations. Spectral transform and solitons: tools to solve and investigate nonlinear evolution equations 1 (1982) · Zbl 0501.35072
[19] Bruschi, M.; Levi, D.; Ragnisco, O.: Nuovo cimento A. 48, 213 (1978)
[20] Oevel, W.; Zhang, H.; Fuchssteiner, B.: Progr. theor. Phys.. 81, 294 (1989)
[21] Strampp, W.; Oevel, W.: Progr. theor. Phys.. 74, 922 (1985)
[22] Yamilov, R. I.: Classification of Toda type scalar lattices. Proc. workshop on nonlinear evolution equations and dynamical systems, 423 (1993)
[23] Cherdantsev, I.; Yamilov, R.: 3rd ed. CRM proc. Lecture notes. CRM proc. Lecture notes 9, 51 (1996)
[24] Svinolupov, S. I.; Sokolov, V. V.: Teoret. mat. Fiz.. 108, 388 (1996)
[25] Adler, V. E.: Phys. lett. A. 190, 53 (1994)
[26] F. Calogero, Tricks of the trade: relating and deriving solvable and integrable dynamical systems, to be published.