Greco, Luigi; Verde, Anna On some nonlinear expressions of the Jacobian. (English) Zbl 0983.46034 Differ. Integral Equ. 13, No. 10-12, 1569-1582 (2000). Summary: We define the expressions \(J\log^{1+ \alpha}(e+|Df|)\) and \(J\log^{1+ \alpha}(e+|J|)\) as Schwartz distributions, for \(f: \Omega\subset\mathbb{R}^n\to \mathbb{R}^n\) a Sobolev mapping such that \(|Df|^n\log^\alpha(e+ |Df|)\) is locally integrable, \(-1<\alpha<0\), and \(J\) the Jacobian determinant. Cited in 1 Document MSC: 46F10 Operations with distributions and generalized functions 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) 47B38 Linear operators on function spaces (general) 46B70 Interpolation between normed linear spaces 30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination Keywords:Schwartz distributions; Sobolev mapping; locally integrable; Jacobian determinant PDF BibTeX XML Cite \textit{L. Greco} and \textit{A. Verde}, Differ. Integral Equ. 13, No. 10--12, 1569--1582 (2000; Zbl 0983.46034)