×

On some nonlinear expressions of the Jacobian. (English) Zbl 0983.46034

Summary: We define the expressions \(J\log^{1+ \alpha}(e+|Df|)\) and \(J\log^{1+ \alpha}(e+|J|)\) as Schwartz distributions, for \(f: \Omega\subset\mathbb{R}^n\to \mathbb{R}^n\) a Sobolev mapping such that \(|Df|^n\log^\alpha(e+ |Df|)\) is locally integrable, \(-1<\alpha<0\), and \(J\) the Jacobian determinant.

MSC:

46F10 Operations with distributions and generalized functions
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47B38 Linear operators on function spaces (general)
46B70 Interpolation between normed linear spaces
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
PDF BibTeX XML Cite