×

zbMATH — the first resource for mathematics

Holomorphically projective mappings and their generalizations. (English. Russian original) Zbl 0983.53013
J. Math. Sci., New York 89, No. 3, 1334-1353 (1998); translation from Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30, 258-291 (1996).
This article is a direct continuation of the author’s article: “Geodesic Mappings of Affine-connected and Riemannian Spaces” (in Russian) [All-Russian Institute for Scientific and Technical information Moscow (1994); J. Math. Sci., New York 78, No. 3, 311–333 (1996; Zbl 0866.53028)]. It is a survey of some new results obtained for holomorphically projective maps of Kählerian space (a natural generalization of geodesic mappings) with a complete guide of references.
Reviewer: S.Noaghi (Deva)

MSC:
53B35 Local differential geometry of Hermitian and Kählerian structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] N. I. Baranov and V. A. Kiosak,Special Vector Fields in Kählerian Spaces [in Russian], Odessa State Pedag. Inst. Press, Odessa (1989).
[2] Sh. Baczo and L. Verhocki, ”E 1-planar mappings of spaces of affine connection without torsion,”Publ. Math.,37, Nos. 1–2, 131–136 (1990).
[3] D. V. Beklemishev, ”Differential geometry of spaces with an almost complex structure,” In:Itogi Nauki. Geometria, 1963, All-Union Institute for Scientific and Technical Information, Moscow (1965), pp. 165–212.
[4] V. E. Berezovsky, ”A new form of fundamental equations of almos geodesic mappings of the type \(\tilde \pi _1 \) of affine-connected spaces,” In:Coll. Sci. Confer. Young Scientists Odessa State Univ., Odessa, May 16–17, 1985. Ser. Math. [in Russian], Odessa Univ., Odessa (1986), pp. 2–8.
[5] V. E. Berezovsky, ”Almost geodesic mappings of affine-connected spaces of the first type preservingn-orthogonal systems of hypersurfaces,” In:Abstr. Regional Conf, Young Scientists [in Russian], Uman (1990), pp. 1–2.
[6] V. E. Berezovsky,On the Problem of First-Type Almost Geodesic Mappings of Riemannian Spaces Which Preserve the System of n-Orthogonal Hypersurfaces [in Russian], Uman State Pedag. Inst. Press, Uman (1991).
[7] V. E. Berezovsky, On Almost Geodesic Mappings of Affine-Connected Spaces of the {\(\pi\)} 1 * Type [in Russian], Uman State Pedag. Inst. Press, Uman (1991).
[8] V. E. Berezovsky, ”On a special case of almost geodesic mappings of affine-connected first-type spaces,” In:Abstr. Part 1. Intern. Sci. Conf. Lobachevsky and Contemp. Geometry. Kazan, August 18–22, 1992 [in Russian] (1992), p. 12.
[9] V. E. Berezovsky and J. Mikeš, ”On almost geodesic mappings of affine-connected spaces,” In:Eighth All-Union Conf. Contemp. Problems of Differ. Geometry, Abstr. [in Russian], Odessa (1984), p. 18.
[10] V. E. Berezovsky and J. Mikeš,A New Classification of Almost Geodesic Mappings of Affine-Connected Spaces [in Russian], Uman State Pedag. Inst. Press, Uman (1991).
[11] V. E. Berezovsky and J. Mikeš, ”On the classification of almost geodesic mappings,” In:Abstr. Republ. Sci.-Method. Conf. Dedicated to the 200th Anniversary of N. I. Lobachevsky, September 3–8, 1992. Part 1 [in Russian], Odessa State Univ. Press, Odessa (1992), p. 54.
[12] D. V. Vedenyapin, ”On certain (n-2)-fold projective spaces,” In:Sci.Reports of Higher School. Phys. Math. Sci. [in Russian], Vol. 6 (1958), pp. 119–126.
[13] V. V. Vishnevsky, ”Affinor structures of manifolds as structures defined by algebras,”Tensor,26, 363–372 (1972).
[14] V. V. Vishnevsky, ”Manifolds over plurals and semitangent structures,” In:Itogi Nauki i Tekhniki. Probl. Geom., Vol. 20, All-Union Institute for Scientific and Technical Information, Moscow (1988), pp. 35–74.
[15] V. V. Vishnevsky, A. P. Shirokov, and V. V. Shurigin,Spaces over Algebras [in Russian], Kazan Univ. Press, Kazan (1985).
[16] M. L. Gavril’chenko, ”To the problem of conformal mappings of Riemannian spaces,” In:Abstr. All-Union School ”Optim. Control. Geometry and Analysis” [in Russian], Kemerovo (1988), p. 16.
[17] M. L. Gavril’chenko, ”Conformal mappings of conformally symmetric spaces onto Einstein spaces,” In:Abstr. Part 1. Intern. Sci. Conf. Lobachevsky and Contemp. Geometry. Kazan, August 18–22, 1992 [in Russian], Kazan State Univ. (1992), p. 20.
[18] V. A. Dobrovolsky, ”Almost projective mappings of gravitational fields. Degenerated case,” In:Gravitation and the Theory of Relativity [in Russian], Vol. 8, Kazan State Univ., Kazan (1971), pp. 65–91.
[19] V. V. Domashev and J. Mikeš,On the Theory of Holomorphically Projective Mappings of Kählerian Spaces [in Russian], Odessa State Univ. Press, Odessa (1977).
[20] V. V. Domashev and J. Mikeš, ”On the theory of holomorphically projective mappings of Kählerian spaces,”Mat. Zametki,23, No. 2, 297–304 (1978). · Zbl 0406.53052
[21] L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, and A. P. Shirokov, ”Geometric-differential structures on manifolds,” In:Itogi Nauki i Tekhniki. Probl. Geom., Vol. 9, All-Union Institute for Scientific and Technical Information, Moscow (1979), pp. 1–247. · Zbl 0455.58002
[22] V. A. Igoshin and Ya. L. Shapiro, ”Quasigeodesic mappings and Riemannian graded structures,”Dokl. Akad. Nauk SSSR,305, No. 5, 1035–1038 (1989).
[23] V. R. Kaigorodov, ”On the Riemannian spaces \(\mathop {K_n^s }\limits^ * \) ,” In:Tr. Geom. Sem., Vol. 5, All-Union Institute for Scientific and Technical Information, Moscow (1976), pp. 359–373.
[24] V. R. Kaigorodov, ”The structure of curvature of space-time,” In:Itogi Nauki i Tekhniki. Probl. Geom., Vol. 14, All-Union Institute for Scientific and Technical Information, Moscow (1983), pp. 177–204.
[25] V. A. Kiosak and M. Haddad,On Holomorphically Projective Mappings of A-Harmonically Kählerian spaces [in Russian], Odessa Nation. Econ. Inst. Press, Odessa (1991).
[26] V. A. Kiosak and M. Haddad, ”OnA-harmonic spaces,” In:Geom. Obobshch. Prostr., Penza (1992). pp. 41–45.
[27] I. N. Kurbatova,On the Problem of Quasiholomorphically Projective Mappings of K-Spaces [in Russian], Odessa State Univ. Press, Odessa (1979).
[28] I. N. Kurbatova, ”On quasiholomorphically projective mappings ofK-spaces with preservation of thee-structure,” In:Abstr. 7th All-Union Conf. Contemp. Geom. Prob. [in Russian], Minsk (1979), p. 104.
[29] I. N. Kurbatova, ”HP-mappings ofH-spaces,”Ukr. Geom. Sb., Kharkov, No. 27, 75–82 (1984). · Zbl 0571.58006
[30] I. N. Kurbatova, ”On 4-quasiplanar mappings of almost quaternion manifolds,”Izv. Vuzov. Mat., No. 1, 75–78 (1986). · Zbl 0602.53029
[31] I. N. Kurbatova and J. Mikeš, ”Simulating physical fields by generalized geodesic mappings,” In:Abstr. All-Union Conf. ”Contemporary Theoretical and Experimental Problems of the Theory of Relativity and Gravitation [in Russian], People’s Friendship University Press, Moscow (1984), p. 29.
[32] I. N. Kurbatova and N. V. Yablonskaya, ”On the problem of the theory of variations ofF-planar curves,”Acta Acad. Paed. Szegediensis. Ser. Phys., Chem., Math., 29–34 (1987–88).
[33] S. G. Leiko and Sami Hussein,On Rotation-Conformal Diffeomorphisms, Odessa State Univ. Press, Odessa (1991).
[34] Yu. G. Lumiste, ”Semisymmetric submanifolds,” In:Itogi Nauki i Tekhniki. Probl. Geom., Vol. 23, All-Union Institute for Scientific and Technical Information, Moscow (1991), pp. 3–28.
[35] J. Mikeš, ”On the estimation of arbitrariness of the general solution of a system of partial differential equations,” In:2nd Republ. Symp. Differ. Integr. Equations [in Russian], Odessa (1978), pp. 59–60.
[36] J. Mikeš,Some Estimates of the Degrees of Mobility Relative to Holomorphically Projective Mappings [in Russian], Odessa State Univ. Press, Odessa (1979).
[37] J. Mikeš, ”On holomorphically projective mappings of Kählerian spaces,”Ukr. Geom. Sb.,23, 90–98 (1980). · Zbl 0463.53013
[38] J. Mikeš, ”On equidistant Kählerian spaces,”Mat. Zametki,38, No. 4, 627–633 (1985).
[39] J. Mikeš, ”Estimates of the orders of groups of projective and holomorphically projective transformations of Riemannian spaces,” In:All-Union School ”Optimal Control. Geometry and Analysis”, Abstr. [in Russian], Kemerovo (1986), p. 98.
[40] J. Mikeš, ”On Sasakian and equidistant Kählerian spaces,”Dokl. Akad. Nauk SSSR,291, No. 1, 33–36 (1986).
[41] J. Mikeš,On Concircular Vector Fields ”in the Large” on Compact Riemannian Spaces [in Russian], Odessa State Univ. Press, Odessa (1988).
[42] J. Mikeš, ”On the arbitrariness ofF-planar mappings,” In:Abstr. 9th All-Union Geom. Conf. [in Russian], Kishinev (1988), p. 212.
[43] J. Mikeš, ”Some problems of the theory of geodesic mappings and infinitesimal, almost geodesic type {\(\pi\)}2 transformations,” In:Abstr. All-Union School ”Optim. Control. Geometry and Analysis” [in Russian], Kemerovo (1988), p. 35.
[44] J. Mikeš, ”OnF-planar transformations and infinitesimal deformations,” In:Abstracts of 3rd All-Union School. Pontryagin Readings. Optim. Control. Geometry and Analysis [in Russian], Kemerovo (1990), p. 49.
[45] J. Mikeš, ”On geodesic and quasigeodesic mappings ”in the large” of Riemannian spaces with boundary,” In:Abstr. All-Union Conf. Young Scientists in Differ. Geom. Dedicated to 80th Anniversary of N. V. Efimov [in Russian], Abrau-Dyurso-Rostov-on-Don (1990), p. 69.
[46] J. Mikeš, ”F-planar transformations of affine-connected spaces,”Arch. Math., Brno,27A, 53–56 (1991).
[47] J. Mikeš, ”On geodesic and holomorphically projective mappings of generalizedm-recurrent Riemannian spaces,”Sib. Mat. Zh., 1–14 (1991).
[48] J. Mikeš, ”On holomorphically projective mappings of Kählerian spaces,” In:Abstr. Rep. Sci.-Method. Confer. Dedicated to the 200th Anniversary of N. I. Lobachevsky, September 3–8, 1992, Part 1 [in Russian], Odessa State Univ. Press, Odessa (1992), p. 81.
[49] J. Mikeš, ”On geodesic and holomorphically projective mappings of compact, semisymmetric, and Ricci-semisymmetric spaces,” In:Abstr. Part 1. Inter. Sci. Conf. Lobachevsky and Contemp. Geometry. Kazan, August 18–22, 1992 [in Russian], Kazan State Univ. Press, Kazan (1992), pp. 63–64.
[50] J. Mikeš, ”OnF- andf-planar mappings, transformations, and deformations,” In:The Geometry of Generalized Spaces [in Russian], Penza (1992), pp. 60–65.
[51] J. Mikeš, ”On specialF-planar mappings onto Riemannian spaces,”Vestn. Mosk. Univ. Mat., Mekh. (1994).
[52] J. Mikeš,Geodesic Mappings of Affine and Riemannian Spaces [in Russian], All-Russian Institute for Scientific and Technical Information, Moscow (1994).
[53] J. Mikeš, M. L. Gavril’chenko, and E. I. Gladysheva, ”On conformal mappings onto Einsteinian spaces,”Vestn. Mosk. Univ. Mat., Mekh. (1994).
[54] J. Mikeš and N. S. Sinyukov, ”On quasiplanar mappings of affine-connected spaces,”Izv. Vuzov. Mat., No. 1, 55–61 (1983). · Zbl 0514.53008
[55] J. Mikeš and G. A. Starko, ”On hyperbolically Sasakian and equidistant hyperbolic Kählerian spaces,”Ukr. Geom. Sb.,32, 92–98 (1989). · Zbl 0711.53042
[56] J. Mikeš and G. A. Starko, ”Generalized equidistant Kählerian and hyperbolically Kählerian spaces,” In:Abstr. 3rd All-Union School. Pontryagin Readings. Optimal Control. Geometry and Analysis [in Russian], Kemerovo (1990), p. 49. · Zbl 0741.53034
[57] V. A. Mirzoyan, ”Ric-semisymmetric submanifolds,” In:Itogi Nauki i Tekhniki. Probl. Geom., Vol. 23, All-Union Institute for Scientific and Technical Information, Moscow (1991), pp. 29–66. · Zbl 0746.53042
[58] D. Moldobaev and K. R. Esenov, ”Certain problems connected with nontrivial holomorphically projective mappings of Kählerian spaces ’in the large’,” In:Final Sci. Conf. of Professors and Lectures of the Inst., abstr. [in Russian], Kirghizia Women’s Ped. Inst., Frunze (1989), p. 62.
[59] A. P. Norden,Affine-Connected Spaces [in Russian], Nauka, Moscow (1976). · Zbl 0925.53007
[60] A. Z. Petrov,New Methods in the General Theory of Relativity [in Russian], Nauka, Moscow (1966). · Zbl 0203.19602
[61] A. Z. Petrov, ”Simulation of physical fields,” In:Gravitation and the Theory of Relativity [in Russian], Vol. 4-5, Kazan State Univ., Kazan (1968), pp. 7–21.
[62] S. M. Pokas and N. V. Yablonskaya, ”On special, almost geodesic mappings of affine-connected and Riemannian spaces,”Acta Acad. Paed. Szeged. Ser. Phys., Chem., Math., 45–50 (1987–1988).
[63] Raad Kadem Dzhamil and I. N. Kurbatova,Geometric Objects, Invariant Relative to 2F-Planar Affine-Connected and Riemannian Spaces with Cubic Structure F (F 3={\(\delta\)}) [in Russian], Dept. at Ukrainian Institute for Scientific and Technical Information (1990).
[64] Ž. Radulovič and J. Mikeš, ”On geodesic andF-planar mappings of conformally Kählerian spaces,” In:Abstr. Part 1. Inter. Sci. Conf. Lobachevsky and Contemp. Geometry. Kazan, August 18–22, 1992 [in Russian], Kazan State Univ. Press, Kazan (1992), p. 81.
[65] P. A. Rashevsky, ”Scalar fields in fibered space,” In:Tr. Sem. Vekt. Tens. Anal., No. 6, Moscow State Univ. (1948).
[66] N. S. Sinyukov,Geodesic Mappings of Riemannian Spaces [in Russian], Nauka, Moscow (1979). · Zbl 0637.53020
[67] N. S. Sinyukov, ”Almost geodesic mappings of affine-connected and Riemannian spaces,” In:Itogi Nauki i Tekhniki. Probl. Geom., Vol. 13, All-Union Institute for Scientific and Technical Information, Moscow (1982), pp. 3–26. · Zbl 0498.53010
[68] N. S. Sinyukov, ”Fundamentals of the global theory of almost geodesic mappings of Riemannian spaces,” In:Differ.-Geom. School [in Russian], Chernovtsy Univ. Press, Chernovtsy (1991), pp. 190–195.
[69] N. S. Sinyukov, I. N. Kurbatova, and J. Mikeš,Holomorphically Projective Mappings of Kählerian Spaces [in Russian], Study Aid, Odessa State Univ. Press, Odessa (1985).
[70] N. S. Sinyukov and E. N. Sinyukova, ”On holomorphically projective mapping of special Kählerian spaces,”Mat. Zametki,36, No. 3, 417–423 (1984). · Zbl 0577.53046
[71] N. S. Sinyukov and E. N. Sinyukova, ”Approximate holomorphically projective mapping of a Kählerian space,” In:Abstr. 3rd All-Union School ”Optim. Control. Geometry and Analysis” [in Russian], Kemerovo (1990), p. 66. · Zbl 0577.53046
[72] E. N. Sinyukova, ”On holomorphically projective mappings of Kählerian spaces that satisfy some conditions of differential character,” In:Abstr. 8th All-Union Conf. on Contemp. Prob. Differ. Geometry [in Russian], Odessa (1984), p. 140. · Zbl 0577.53046
[73] E. N. Sinyukova,Holomorphically Projective Mappings of Kählerian Spaces in the Large under Certain Conditions of Differential Character [in Russian], Dep. at Ukrainian Institute for Scientific and Technical Information, 1–32 (1987).
[74] E. N. Sinyukova and N. S. Sinyukov, ”InfinitesimalF-planar deformations of the metrics of Riemannian spaces,” In:Abstr. All-Union Conf. in Geometry and Analysis [in Russian], Novosibirsk (1989), p. 75.
[75] V. S. Sobchuk, ”On an almost geodesic mappings of Riemannian spaces,”Dokl. Akad. Nauk SSSR,212, No. 5, 1071–1073 (1973).
[76] V. S. Sobchuk, ”An almost geodesic mapping of Riemannian spaces onto symmetric Riemannian spaces,”Mat. Zametki,17, No. 5, 757–763 (1975). · Zbl 0315.53017
[77] V. S. Sobchuk, ”An almost geodesic mapping of Riemannian spaces that preserve then-orthogonal system of hypersurfaces” In:Abstr. 7th All-Union Conf. in Contemp. Prob. of Geometry [in Russian], Minsk (1979), p. 183.
[78] V. S. Sobchuk, ”Almost geodesic mappings of semisymmetric spaces,” In:Abstrstr. All-Union School ”Optimal Control. Geometry and Analysis” [in Russian], Kemerovo (1986), p. 199.
[79] V. S. Sobchuk, ”Internal, almost geodesic mappings of Riemannian spaces,”Izv. Vuzov. Mat., No. 5, 62–64 (1989). · Zbl 0681.53009
[80] V. S. Sobchuk, ”Investigations in the theory of geodesic mappings and their generalizations,” In:Diff.-Geom. School, Chernovtsy Univ. Press, Chernovtsy (1991), pp. 196–208.
[81] V. S. Sobchuk and V. S. Shadny,(n-2)-Projective Spaces Corresponding to a Recurrent, Almost Contact Structure [in Russian], Chernovtsy Univ. Press, Chernovtsy (1986).
[82] G. A. Starko, ”On hyperbolic Kählerian spaces that admit ofK-concircular vector fields,” In:Abstr-Part 1. Inter. Sci. Conf. Lobachevsky and Contemp. Geometry, Kazan, August 18–22, 1992 [in Russian], Kazan State Univ., Kazan (1992), p. 94.
[83] S. E. Stepanov, ”On one class of Riemannian structures of an almost product,”Izv. Vuzov. Mat., No. 7, 40–46 (1989). · Zbl 0684.53031
[84] M. Haddad, ”On holomorphically projective mapping of four-dimensional Einstein Kählerian spaces,” In:Abstr. 3rd All-Union School. Pontryagin Readings. Optimal Control Geometry and Analysis [in Russian], Kemerovo (1990), p. 82.
[85] M. Haddad, ”On generalized harmonic Kählerian spaces,” In:All-Union Meeting of Young Scientists in Differ. Geometry Dedicated to the 80th Anniversary of N. V. Efimov, abstr. [in Russian], Abrau-Dyurso-Rostov-on-Don (1990), p. 112.
[86] M. Haddad, ”Holomorphically projective mappings of generalized quasisemisymmetric Kählerian spaces,” In:Abstr. Part 1. Inter. Sci. Conf. Lobachevsky and Contemp. Geometry. Kazan, August 18–22, 1992 [in Russian], Kazan State Univ. Press, Kazan (1992), p. 106.
[87] V. M. Chernyshenko, ”Affine-connected spaces with a corresponding complex of geodesics,” In:Collection of Works of Mech.-Math. Chair of Dnepropetrovsk Univ. [in Russian], No. 6 (1961), pp. 105–118.
[88] V. M. Chernyshenko, ”Spaces with a special complex of geodesics,” In:Tr. Sem. Vekt. Tenz. Anal., Vol. 2 (1961), pp. 253–268.
[89] M. A. Cheshkova,On almost geodesic mappings of affine-connected spaces, Dep. at All-Union Institute for Scientific and Technical Information (1989).
[90] V. S. Shadny, ”Tensor Criteria of (n-2)-projective Riemannian spaces corresponding to the absolutely parallele-structure,” In:Symp. in Geometry ”in the Large” and the Fundamentals of the Theory of Relativity [in Russian], Novosibirsk (1982), pp. 113–114.
[91] V. S. Shadny,On Almost Geodesic Second-Type Mappings of Riemannian Spaces onto Conformally Flat Spaces [in Russian], Dep. at Ukrainian Institute for Scientific and Technical Information (1987).
[92] V. S. Shadny, ”On a certain class of almost geodesic second-type mappings of special Riemannian spaces,” In:Differ. Geom. School [in Russian], Chernovtsy Univ. Press, Chernovtsy (1991), pp. 209–221.
[93] V. S. Shadny and N. V. Fedchishin, ”Almost geodesic mapping {\(\pi\)}2 of Riemannian spaces onto conformally flat spaces,” In:All-Union Conf. in Geometry ”in the Large” [in Russian], Novosibirsk (1987), p. 131.
[94] V. S. Shadny and N. V. Fedchishin,On Almost Geodesic Second-Type Mappings of Riemannian Spaces onto Conformally Flat Spaces [in Russian], Chernovtsy Univ. Press, Chernovtsy (1987).
[95] I. G. Shandra, ”Geodesic mappings of equidistant spaces and Jordan algebras of the spacesV n (K),”Diff. Geom. Mnogoobr. Figur, No. 24, 104–111 (1993). · Zbl 0888.53045
[96] Ya. L. Shapiro, ”On quasigeodesic mappings,”Izv. Vuzov. Mat., No. 9, 53–55 (1980).
[97] A. P. Shirokov, ”To the problem ofA-spaces,” In:A Hundred and Twenty-Five Years of Lobachevsky Non-Euclidean Geometry (1826–1951) [in Russian], GITL, Moscow-Leningrad (1952), pp. 195–200.
[98] A. P. Shirokov, ”Structures on differentiable manifolds,” In:Itogi Nauki i Tekhniki Algebra. Topology. Geometry. 1967, All-Union Institute for Scientific and Technical Information, Moscow (1969), pp. 127–188.
[99] P. A. Shirokov,Selected Works in Geometry [in Russian], Kazan State Univ. Press, Kazan (1966). · Zbl 0258.53048
[100] M. Shiha, ”Holomorphically projective mappings ofm-parabolically Kählerian spaces,” In:Abstr. Part 1. Inter. Sci. Conf. Lobachevsky and Contemp. Geometry. Kazan, August 18–22, 1992 [in Russian], Kazan State Univ. Press, Kazan (1992), p. 115.
[101] M. Shiha and J. Mikeš, ”Parabolically Kählerian and Sasakian spaces,” In:All-Union Meeting of Young Scientists in Differ. Geometry Dedicated to the 80th Anniversary of N. V. Efimov, abstr. [in Russian], Abrau-Dyurso-Rostov-on-Don (1990), p. 120.
[102] M. Shiha and J. Mikeš, ”Holomorphically projective mappings ofm-parabolically Kählerian spaces,” In:3rd All-Union School. Pontryagin Readings. Optimal Control, Geometry and Analysis, abstr. [in Russian], Kemerovo (1990), p. 49.
[103] M. Shiha and J. Mikeš,Holomorphically projective Mappings of Parabolically Kählerian Spaces [in Russian], Odessa State Univ. Press, Odessa (1991).
[104] K. R. Esenov,Nontrivial Holomorphically Projective Mapping (NHPM) of Special Kählerian Spaces onto the Einstein Space [in Russian], Dep. at Ukrainian Institute for Scientific and Technical Information (1985).
[105] K. R. Esenov, Classification of Certain Riemannian Spaces That Admit of Special, Second-Type {\(\pi\)}2, Almost Geodesic Mappings, Odessa State Univ. Press, Odessa (1985).
[106] K. R. Esenov, ”On equations which are invariant relative to special mappings,” In:Conf. Math. Mech. in Kirghizia Dedicated to the 70th Anniversary of the October, abstr. [in Russian], Frunze (1987).
[107] K. R. Esenov, ”On a certain class of (n)-projective Riemannian spaces,” In:Proc. Sci. Meeting Young Scientists (in Russian], Odessa (1986), pp. 165–170.
[108] K. R. Esenov, ”On the properties of generalized equidistant Kählerian spaces that admit of special, second-type, almost geodesic mappings.” [Invest. in Topol. Gener. Spaces], In:Research Works [in Russian], Frunze (1988), pp. 81–84.
[109] K. R. Esenov, ”On subprojective second-order spaces”, In:Abstr. Part 1. Inter. Sci. Conf. Lobachevsky and Contemp. Geometry. Kazan, August 18–22, 1992 [in Russian], Kazan State Univ. Press, Kazan (1992), p. 119.
[110] N. V. Yablonskaya, ”On certain classes of almost geodesic mappings of general affine-connected spaces”,Ukr. Geon. Sb., No. 27, 120–124 (1984). · Zbl 0571.58005
[111] A. Adamov, ”On reduced almost geodesic mappings in Riemannian spaces”,Demonstr. Math.,15, No. 4, 925–934 (1982). · Zbl 0548.53017
[112] M. Afvat and A. Švec, ”Global differential geometry of hypersurfaces”,Rozpr. Čsav,88, No. 7, 1–75 (1978).
[113] H. Akbar-Zadeh, ”Sur les transformations holomorphiquement projectives de varietes hermitiannes et kähleriannes”,C.R. Acad. Sci.,304, Ser. 1, 335–338 (1987). · Zbl 0613.53026
[114] V. E. Berezovski and J. Mikeš, ”On classification of almost geodesic mappings of affine-connected spaces”, In:Proc. Conf. Diff Geom. Appl., Novi Sad, Yugoslavia (1989), pp. 41–48.
[115] É. Cartan, ”Sur une classe remarquable d’espaces de Riemann”,Bull. Soc. Math. France,54, 214–264 (1926). · JFM 52.0425.01
[116] É. Cartan,Leçons sur la Theorie des Spaces a Connexion Projective, Paris (1931).
[117] N. Coburn, ”Unitary spaces with corresponding geodesic”,Bull. Amer. Math. Soc.,1, No. 47, 901–910 (1941). · JFM 67.1078.01
[118] L. P. Eisenhart,Riemannian Geometry, Princeton Univ. Press (1926).
[119] A. Fialkow, ”Conformal geodesic”,Trans. Amer. Math. Soc.,45, 443–473 (1939). · Zbl 0021.06501
[120] M. Haddad, ”Holomorphically projective mappings ofT-quasisemisymmetric and generally symmetric Kählerian spaces”, In:Proc. Conf. Diff. Geom. Appl., Opava, Czechoslovakia (1993), pp. 137–141. · Zbl 0805.53018
[121] I. Hasegawa and K. Yamaguchi, ”On infinitesimal holomorphically projective transformations in compact Káhlerian manifolds”,Hokkaido Math. J.,8, No. 2, 214–219 (1979). · Zbl 0424.53037
[122] S. Ishihara, ”Holomorphically projective changes and their groups in almost complex manifolds”,Tonoku Math. J.,9, No. 3, 273–297 (1957). · Zbl 0090.38604
[123] S. Ishihara and S. Tachibana, ”A note on holomorphically projective transformations of a Kählerian space with parallel Ricci tensor”,Tohoku Math. J.,13, No. 2, 193–200 (1961). · Zbl 0113.15402
[124] E. Kähler, ”Uber eine bemerkenswerte Hermitische Metric”,Abh. Math. Semin. Hamburg. Univ.,9, 173–186 (1933). · Zbl 0005.41301
[125] T. Kashiwada, ”Notes on infinitesimalHP-transformations in Kähler manifolds with constant scalar curvature”,Natur. Sci. Rept.,25, No. 2, Ochanomizu Univ., 67–68 (1974). · Zbl 0328.53051
[126] S. Kobayashi,Transformation Groups in Differential Geometry, Springer-Verlag, Berlin (1972). · Zbl 0246.53031
[127] S. Kobayashi and K. Nomizu,Foundations of Differential Geometry, Vol. 1, Interscience, New York-London (1963); Vol. 2 (1969). · Zbl 0119.37502
[128] A. Lichnerowicz, ”Courbure, nombres de Betti et espaces symmetriques”, In:Proc. Intern. Congress Math., Cambridge, 1950.Amer. Math. Soc., Vol. 2 (1952), pp. 216–223.
[129] J. Mikeš, ”F-planar mappings and transformations”, In:Diff. Geom. Appl. Proc. Conf. August 24–30, 1986, Brno, Czechoslovakia, Brno (1986), pp. 245–254.
[130] J. Mikeš, ”On an order of special transformation of Riemannian spaces”, In:Proc. Conf. Diff. Geom. Appl., Dubrovnik, 1988, Novi Sad, Yugoslavia (1989), pp. 199–208.
[131] J. Mikeš, ”Geodesic and holomorphically projective mappings of generalizedm-recurrent spaces”, In:Abstr. Colloq. Diff. Geom., J. Bolyai Math. Soc., Eger, Hungary (1989), pp. 35–36.
[132] J. Mikeš, ”Global geodesic mappings and their generalizations for compact Riemannian spaces”, In:Proc. Conf. Diff. Geom. Appl., Opava, Czechoslovakia (1993). · Zbl 0967.53505
[133] D. Moldobayev and J. Mikeš, ”On some problems of the conformal transformations of Riemannian spaces”. In:Diff. Geom. Appl. Proc. Conf., Brno, 1986, Comm. (1987), pp. 255–256.
[134] D. Moldobayev and A. B. Sadikova, ”On some special transformations preserving the Ricci tensor”, In:Diff. Geom. Appl. Proc. Conf., Brno, Czechoslovakia, 1989, World Scientific, Singapore (1990), pp. 138–139. · Zbl 0786.53011
[135] Y. Muto, ”On some special Kählerian spaces”,Sci. Repts. Yokogama Nat. Univ., Sec. 1, No. 8, 1–8 (1961). · Zbl 0104.03001
[136] L. Nicolescu, ”Les espaces de Riemann en representation subgeodesique”,Tensor,32, No. 2, 182–187 (1978). · Zbl 0369.53019
[137] T. Otsuki and Y. Tashiro, ”On curves in Kählerian space”,Math. J. Okayama Univ.,4, 54–58 (1954). · Zbl 0057.14101
[138] M. Prvanović, ”Holomorphically projective transformations in a locally product spaces”,Math. Balkan,1, 195–213 (1971). · Zbl 0221.53062
[139] M. Prvanović, ”A note on holomorphically projective transformations on the Kähler spaces”,Tensor,35, No. 1, 99–104 (1981). · Zbl 0467.53032
[140] Ž. Radulovič and J. Mikeš, ”Geodesic and holomorphically projective mappings of conformally Kählerian spaces”, In:Proc. Conf. Diff. Geom. Appl., Opava, Czechoslovakia (1993), pp. 151–156. · Zbl 0805.53061
[141] B. B. Ravi, ”On Kählerian concircularn-symmetric andn-recurrent manifolds”,Acta Sci. Indica. Math.,13, No. 4, 207–211 (1987). · Zbl 0652.53018
[142] T. Sakaguchi, ”On the holomorphically projective correspondence between Kählerian spaces preserving complex structure”,Hokkaido Math. J.,33, No. 2, 203–212 (1974). · Zbl 0305.53024
[143] M. Shiha, ”On the theory of holomorphically projective mappings of parabolically Kählerian spaces”, In:Proc. Conf. Diff. Geom. Appl., Opava, Czechoslovakia (1993), pp. 157–160. · Zbl 0805.53017
[144] S. S. Singh, P. K. Srivastava, and R. P. Ojha, ”A classification of Kählerian manifolds satisfying some special conditions”,Acta Math. Acad. Sci. Hungary,48, Nos. 3–4, 247–254 (1986). · Zbl 0618.53021
[145] S. Tachibana and S. Ishihara, ”On infinitesimal holomorphically projective transformations in Kählerian manifolds”,Tohoku Math. J.,12, No. 1, 77–101 (1960). · Zbl 0093.35404
[146] Y. Tashiro, ”On holomorphically projective correspondence in an almost complex space”,Math. J. Okayama Univ.,6, No. 2, 147–152 (1957). · Zbl 0077.35501
[147] A. G. Walker, ”On Ruses spaces of recurrent curvature”,Proc. London Math. Soc.,52, No. 1, 36–64 (1950). · Zbl 0039.17702
[148] A. G. Walker, ”Conformally Kähler manifolds”,Proc. Cambridge Philos. Soc.,50, 16–19 (1954). · Zbl 0055.15704
[149] T. Yamada, ”On certain recurrent spaces andHP-transformation in a Kählerian manifold”,J. Asahikawa Tech. Coll.,13, 103–109 (1976).
[150] S. Yamaguchi, ”On Kählerian torse-forming vector fields”,Kodai Math. J.,2, No. 4, 103–115 (1979). · Zbl 0409.53044
[151] K. Yano, ”Concircular geometry, I–IV”,Proc. Imp. Acad. Tokyo,16, 195–200, 442–448, 505–511 (1940). · Zbl 0024.08102
[152] K. Yano, ”Union curves and subpaths”,Math. J.,1, 51–59 (1948). · Zbl 0041.09501
[153] K. Yano, ”Sur la correspondence projective entre deux espaces pseudohermitiens”,C.R. Acad. Sci.,239, 1346–1348 (1956). · Zbl 0056.41201
[154] K. Yano,Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford (1965). · Zbl 0127.12405
[155] K. Yano and H. Hiramatu, ”Integral inequalities and their applications in Kählerian manifolds admitting a holomorphically projective vector field”,Bull. Inst. Math. Acad. Sinica,6, 313–332 (1978). · Zbl 0406.53023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.