Integrated Brownian motion, conditioned to be positive. (English) Zbl 0983.60078

Summary: We study the two-dimensional process of integrated Brownian motion and Brownian motion, where integrated Brownian motion is conditioned to be positive. The transition density of this process is derived from the asymptotic behavior of hitting times of the unconditioned process. Explicit expressions for the transition density in terms of confluent hypergeometric functions are derived, and it is shown how our results on the hitting time distributions imply previous results of Isozaki-Watanabe and Goldman. The conditioned process is characterized by a system of stochastic differential equations (SDEs) for which we prove an existence and unicity result. Some sample path properties are derived from the SDEs and it is shown that \(t\mapsto t^{9/10}\) is a “critical curve” for the conditioned process in the sense that the expected time that the integral part of the conditioned process spends below any curve \(t\mapsto t^\alpha\) is finite for \(\alpha< 9/10\) and infinite for \(\alpha\geq 9/10\).


60J65 Brownian motion
60G40 Stopping times; optimal stopping problems; gambling theory
60J25 Continuous-time Markov processes on general state spaces
Full Text: DOI


[1] ABRAMOWITZ, M. and STEGUN, I. A. 1964. Handbook of Mathematical Functions. National Bureau of Standards 55, Washington, DC. · Zbl 0171.38503
[2] GOLDMAN, M. 1971. On the first passage of the integrated Wiener process. Ann. Math. Statist. 42 2150 2155. · Zbl 0271.60049
[3] IKEDA, N. and WATANABE, S. 1981. Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam. · Zbl 0495.60005
[4] ISOZAKI, Y. and WATANABE, S. 1994. An asymptotic formula for the Kolmogorov diffusion and a refinement of Sinai’s estimates for the integral of Brownian motion. Proc. Japan Acad. Ser. A 70 271 276. · Zbl 0820.60066
[5] ITO, K. and MCKEAN, H. P., JR. 1974. Diffusion Processes and Their Sample Paths. Springer, Berlin. · Zbl 0285.60063
[6] JONGBLOED, G. 1995. Three statistical inverse problems. Ph.D. dissertation, Delft Univ.
[7] KOLMOGOROV, A. N. 1934. Zuffallige Bewegungen. Ann. Math. II 35 116 117. \"
[8] LACHAL, A. 1991. Sur le premier instant de passage de l’integrale du mouvement browníen. Ann. Inst. H. Poincare 27 385 405. \' · Zbl 0747.60075
[9] LACHAL, A. 1992. Sur les excursions de l’integrale du mouvement brownien. C. R. Acad. Ści. Paris Ser. I 314 1053 1056. \' · Zbl 0757.60075
[10] LACHAL, A. 1996. Sur la distribution de certaines fonctionnelles de l’integrale du mouveḿent Brownien avec derives parabolique et cubique. Comm. Pure Appl. Math. 49 \' 1299 1338. · Zbl 0867.60050
[11] MAMMEN, E. 1991. Nonparametric regression under qualitative smoothness assumptions. Ann. Statist. 19 741 759. · Zbl 0737.62039
[12] MCKEAN, H. P., JR. 1963. A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 227 235. · Zbl 0119.34701
[13] OLVER, F. W. J. 1974. Asymptotics and Special Functions. Academic Press, New York. · Zbl 0303.41035
[14] ROGERS, L. C. G. and WILLIAMS, D. 1987. Diffusions, Markov Processes and Martingales 2. Wiley, New York. · Zbl 0977.60005
[15] ROGERS, L. C. G. and WILLIAMS, D. 1994. Diffusions, Markov Processes and Martingales 1, 2nd ed. Wiley, New York. · Zbl 0826.60002
[16] SINAI, Y. G. 1992. Statistics of shocks in solutions of inviscid Burgers equation. Comm. Math. Phys. 148 601 621. · Zbl 0755.60105
[17] SEATTLE, WASHINGTON 98195-4322 E-MAIL: jaw@stat.washington.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.