Ewing, Richard E.; Wang, Hong A summary of numerical methods for time-dependent advection-dominated partial differential equations. (English) Zbl 0983.65098 J. Comput. Appl. Math. 128, No. 1-2, 423-445 (2001). Summary: We give a brief summary of numerical methods for time-dependent advection-dominated partial differential equations (PDEs), including first-order hyperbolic PDEs and nonstationary advection-diffusion PDEs. Mathematical models arising in porous medium fluid flow are presented to motivate these equations. It is understood that these PDEs also arise in many other important fields and that the numerical methods reviewed apply to general advection-dominated PDEs. We conduct a brief historical review of classical numerical methods, and a survey of the recent developments on the Eulerian and characteristic methods for time-dependent advection-dominated PDEs. The survey is not comprehensive due to the limitation of its length, and a large portion of the paper covers characteristic or Eulerian-Lagrangian methods. Cited in 61 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis 76S05 Flows in porous media; filtration; seepage 76M10 Finite element methods applied to problems in fluid mechanics 35K15 Initial value problems for second-order parabolic equations 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs 76M20 Finite difference methods applied to problems in fluid mechanics Keywords:advection-diffusion equations; characteristic methods; survey paper; finite difference method; finite element method; discontinuous Galerkin method; porous medium fluid flow; Eulerian-Lagrangian methods Software:SHASTA PDF BibTeX XML Cite \textit{R. E. Ewing} and \textit{H. Wang}, J. Comput. Appl. Math. 128, No. 1--2, 423--445 (2001; Zbl 0983.65098) Full Text: DOI References: [1] Allen, D.; Southwell, R., Relaxation methods applied to determining the motion in two dimensions of a fluid past a fixed cylinder, Quart. J. Mech. Appl. Math., 8, 129-145 (1955) · Zbl 0064.19802 [3] Arbogast, T.; Wheeler, M. F., A characteristic-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal., 32, 404-424 (1995) · Zbl 0823.76044 [4] Barrett, J. W.; Morton, K. W., Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems, Comput. Methods Appl. Mech. Eng., 45, 97-122 (1984) · Zbl 0562.76086 [5] Bear, J., Hydraulics of Groundwater (1979), McGraw-Hill: McGraw-Hill New York [7] Binning, P. J.; Celia, M. A., A finite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase flow systems, Water Resour. Res., 32, 103-114 (1996) [8] Boris, J. P.; Book, D. L., Flux-corrected transport I, SHASTA, a fluid transport algorithm that works, J. Comput. Phys., 11, 38-69 (1973) · Zbl 0251.76004 [9] Boris, J. P.; Book, D. L., Flux-corrected transport, III, Minimal-error FCT algorithms, J. Comput. Phys., 20, 397-431 (1976) · Zbl 0325.76037 [10] Bouloutas, E. T.; Celia, M. A., An improved cubic Petrov-Galerkin method for simulation of transient advection-diffusion processes in rectangularly decomposable domains, Comput. Meth. Appl. Mech. Eng., 91, 289-308 (1991) · Zbl 0825.76609 [11] Brooks, A.; Hughes, T. J.R., Streamline upwind Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Eng., 32, 199-259 (1982) · Zbl 0497.76041 [12] Buckley, S. E.; Leverret, M. C., Mechanism of fluid displacement in sands, Trans. AIME, 146, 107-116 (1942) [15] Celia, M. A.; Herrera, I.; Bouloutas, E. T.; Kindred, J. S., A new numerical approach for the advective-diffusive transport equation, Numer. Meth. PDEs, 5, 203-226 (1989) · Zbl 0678.65083 [16] Celia, M. A.; Russell, T. F.; Herrera, I.; Ewing, R. E., An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Resour., 13, 187-206 (1990) [18] Chavent, G.; Cockburn, B., The local projection \(P^0, P^1\)-discontinuous Galerkin finite element method for scalar conservation laws, \(M^2\) AN, 23, 565-592 (1989) · Zbl 0715.65079 [19] Chavent, G.; Jaffré, J., Mathematical Models and Finite Elements for Reservoir Simulation (1986), North-Holland: North-Holland Amsterdam · Zbl 0603.76101 [20] Chavent, G.; Salzano, G., A finite element method for the 1D water flooding problem with gravity, J. Comput. Phys., 45, 307-344 (1982) · Zbl 0489.76106 [21] Chen, Z.; Ewing, R. E., Comparison of various formulations of three-phase flow in porous media, J. Comput. Phys., 132, 362-373 (1997) · Zbl 0880.76089 [22] Christie, I.; Griffiths, D. F.; Mitchell, A. R.; Zienkiewicz, O. C., Finite element methods for second order differential equations with significant first derivatives, Int. J. Numer. Eng., 10, 1389-1396 (1976) · Zbl 0342.65065 [24] Cockburn, B.; Hou, S.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comp., 54, 545-590 (1990) · Zbl 0695.65066 [25] Cockburn, B.; Shu, C.-W., The Runge-Kutta local projection \(P^1\)-discontinuous Galerkin finite element method for scalar conservation laws II: general framework, Math. Comp., 52, 411-435 (1989) · Zbl 0662.65083 [26] Cockburn, B.; Shu, C.-W., The Runge-Kutta local projection \(P^1\)-discontinuous Galerkin finite element method for scalar conservation laws, \(M^2\) AN, 25, 337-361 (1991) · Zbl 0732.65094 [27] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin finite element method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059 [28] Colella, P., A direct Eulerian MUSCL scheme for gas dynamics, SIAM J. Sci. Statist. Comput., 6, 104-117 (1985) · Zbl 0562.76072 [29] Colella, P.; Woodward, P., The piecewise-parabolic method (PPM) for gasdynamical simulations, J. Comput. Phys., 54, 174-201 (1984) · Zbl 0531.76082 [30] Courant, R.; Friedrichs, K. O.; Lewy, H., Uber die partiellen differenzen-gleichungen der mathematisches physik, Math. Ann., 100, 32-74 (1928) · JFM 54.0486.01 [31] Courant, R.; Isaacson, E.; Rees, M., On the solution of nonlinear hyperbolic differential equations by finite differences, Comm. Pure. Appl. Math., 5, 243-255 (1952) · Zbl 0047.11704 [32] Dahle, H. K.; Espedal, M. S.; Ewing, R. E.; Sævareid, O., Characteristic adaptive sub-domain methods for reservoir flow problems, Numer. Methods PDE’s, 6, 279-309 (1990) · Zbl 0707.76093 [33] Dahle, H. K.; Ewing, R. E.; Russell, T. F., Eulerian-Lagrangian localized adjoint methods for a nonlinear convection-diffusion equation, Comput. Methods Appl. Mech. Eng., 122, 223-250 (1995) · Zbl 0851.76058 [34] Douglas, J.; Furtado, F.; Pereira, F., On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs, Comput. Geosci., 1, 155-190 (1997) · Zbl 0963.76549 [37] Douglas, J.; Russell, T. F., Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 871-885 (1982) · Zbl 0492.65051 [38] Espedal, M. S.; Ewing, R. E., Characteristic Petrov-Galerkin sub-domain methods for two-phase immiscible flow, Comput. Methods Appl. Mech. Eng., 64, 113-135 (1987) · Zbl 0607.76103 [39] Espedal, M. S.; Ewing, R. E.; Puckett, J. A.; Schmidt, R. S., Simulation techniques for multiphase and multicomponent flows, Comm. Appl. Numer. Methods, 4, 335-342 (1988) · Zbl 0709.76522 [40] Ewing (Ed.), R. E., The Mathematics of Reservoir Simulation, Research Frontiers in Applied Mathematics, Vol. 1 (1984), SIAM: SIAM Philadelphia, PA [42] Ewing, R. E., Simulation of multiphase flows in porous media, Transport in Porous Media, 6, 479-499 (1991) [43] Ewing, R. E.; Russell, T. F.; Wheeler, M. F., Simulation of miscible displacement using mixed methods and a modified method of characteristics, SPE 12241, 1983 (71 81) [45] Ewing, R. E.; Wang, H., Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis, Comput. Mech., 12, 97-121 (1993) · Zbl 0774.76058 [46] Ewing, R. E.; Wang, H., An optimal-order error estimate to Eulerian-Lagrangian localized adjoint method for variable-coefficient advection-reaction problems, SIAM Numer. Anal., 33, 318-348 (1996) · Zbl 0860.65086 [47] Farmer, C. L., A moving point method for arbitrary Peclet number multi-dimensional convection-diffusion equations, IMA J. Numer. Anal., 5, 465-480 (1980) · Zbl 0581.76091 [48] Finlayson, B. A., Numerical Methods for Problems with Moving Fronts (1992), Ravenna Park Publishing: Ravenna Park Publishing Seattle [49] Garder, A. O.; Peaceman, D. W.; Pozzi, A. L., Numerical calculations of multidimensional miscible displacement by the method of characteristics, Soc. Pet. Eng. J., 4, 26-36 (1964) [50] Godunov, S. K., A difference scheme for numerical computation of discontinuous solutions of fluid dynamics, Mat. Sb., 47, 271-306 (1959) · Zbl 0171.46204 [51] Goodman, J. B.; LeVeque, R. J., A geometric approach to high-resolution TVD schemes, SIAM J. Numer. Anal., 25, 268-284 (1988) · Zbl 0645.65051 [52] Hansbo, P.; Szepessy, A., A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 84, 107-129 (1990) [53] Harten, A., High resolution schemes for hyperbolic conservation laws, J. Comput. Phys., 49, 357-393 (1983) · Zbl 0565.65050 [54] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high-order accurate essentially nonoscillatory schemes, III, J. Comput. Phys., 71, 231-241 (1987) · Zbl 0652.65067 [55] Harten, A.; Hyman, J. M.; Lax, P. D., On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math., 29, 297-322 (1976) · Zbl 0351.76070 [56] Harten, A.; Osher, S., Uniformly high-order accurate nonoscillatory schemes, I, SIAM J. Numer. Anal., 24, 279-309 (1987) · Zbl 0627.65102 [57] Healy, R. W.; Russell, T. F., A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation, Water Resour. Res., 29, 2399-2413 (1993) [58] Healy, R. W.; Russell, T. F., Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method, Adv. Water Res., 21, 11-26 (1998) [59] Hedstrom, G., Models of difference schemes for \(u_t+u_{x\) · Zbl 0323.65029 [60] Herrera, I.; Ewing, R. E.; Celia, M. A.; Russell, T. F., Eulerian-Lagrangian localized adjoint methods: the theoretical framework, Numer. Methods PDEs, 9, 431-458 (1993) · Zbl 0784.65071 [61] Hughes, T. J.R., Multiscale phenomena: Green functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 387-401 (1995) · Zbl 0866.76044 [62] Hughes, T. J.R.; Brooks, A. N., A multidimensional upwind scheme with no crosswind diffusion, (Hughes, T. J.R., Finite Element Methods for Convection Dominated Flows, Vol. 34 (1979), ASME: ASME New York), 19-35 · Zbl 0423.76067 [63] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III, The general streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Eng., 58, 305-328 (1986) · Zbl 0622.76075 [64] Jiang, G.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065 [65] Johnson, C.; Pitkäranta, J., An analysis of discontinuous Galerkin methods for a scalar hyperbolic equation, Math. Comp., 46, 1-26 (1986) · Zbl 0618.65105 [66] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. Comp., 54, 107-129 (1990) · Zbl 0685.65086 [67] Lax, P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (1973), SIAM: SIAM Philadelphia, PA · Zbl 0268.35062 [68] Lax, P. D.; Wendroff, B., Systems of conservation laws, Comm. Pure Appl. Math., 13, 217-237 (1960) · Zbl 0152.44802 [70] LeVeque, R. J., Numerical Methods for Conservation Laws (1992), Birkhäuser: Birkhäuser Basel · Zbl 0847.65053 [71] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially nonoscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076 [72] Markowich, P. A.; Ringhofer, C.; Schmeiser, S., Semiconductor Equations (1990), Springer: Springer Vienna · Zbl 0765.35001 [74] Morton, K. W.; Priestley, A.; Süli, E., Stability of the Lagrangian-Galerkin method with nonexact integration, RAIRO \(M^2\) AN, 22, 123-151 (1988) · Zbl 0661.65114 [75] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068 [76] Neuman, S. P., An Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids, J. Comput. Phys., 41, 270-294 (1981) · Zbl 0484.76095 [77] Neuman, S. P., Adaptive Eulerian-Lagrangian finite element method for advection-dispersion equation, Int. J. Numer. Methods Eng., 20, 321-337 (1984) · Zbl 0565.76003 [78] Osherm S. Chakravarthy, S., High resolution schemes and the entropy condition, SIAM J. Numer. Anal., 21, 984-995 (1984) [79] Peterson, T., A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal., 28, 133-140 (1991) · Zbl 0729.65085 [80] Pironneau, O., On the transport-diffusion algorithm and its application to the Navier-Stokes equations, Numer. Math., 38, 309-332 (1982) · Zbl 0505.76100 [81] Price, H. S.; Varga, R. S.; Warren, J. E., Applications of oscillation matrices to diffusion-convection equations, J. Math. Phys., 45, 301-311 (1966) · Zbl 0143.38301 [82] Pudykiewicz, J.; Staniforth, A., Some properties and comparative performance of the semi-Lagrangian method of robert in the solution of the advection-diffusion equation, Atmosphere-Ocean, 22, 283-308 (1984) [90] Salmon, R., Lectures on Geophysical Fluid Dynamics (1998), Oxford University Press: Oxford University Press New York [91] Shih, Y. T.; Elman, H. C., Modified streamline diffusion schemes for convection-diffusion problems, Comput. Methods Appl. Mech. Eng., 174, 137-151 (1999) · Zbl 0957.76035 [95] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 28, 891-906 (1991) · Zbl 0565.65048 [96] Thomaidis, G.; Zygourakis, K.; Wheeler, M. F., An explicit finite difference scheme based on the modified method of characteristics for solving diffusion-convection problems in one space dimension, Numer. Methods Partial Differential Equations, 4, 119-138 (1988) · Zbl 0643.65055 [97] Trefethen, L. N., Group velocity in finite difference schemes, SIAM Rev., 24, 113-136 (1982) · Zbl 0487.65055 [98] van Leer, B., Towards the ultimate conservative difference scheme II, Monotonicity and conservation combined in a second order scheme, J. Comput. Phys., 14, 361-370 (1974) · Zbl 0276.65055 [99] van Leer, B., On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher, and Roe, SIAM J. Sci. Statist. Comput., 5, 1-20 (1984) · Zbl 0547.65065 [100] Von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 232-237 (1950) · Zbl 0037.12002 [102] Wang, H., A family of ELLAM schemes for advection-diffusion-reaction equations and their convergence analyses, Numer. Meth. PDEs, 14, 739-780 (1998) · Zbl 0936.76033 [103] Wang, H., An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations, SIAM J. Numer. Anal., 37, 1338-1368 (2000) · Zbl 0966.76050 [104] Wang, H.; Dahle, H. K.; Ewing, R. E.; Espedal, M. S.; Sharpley, R. C.; Man, S., An ELLAM Scheme for advection-diffusion equations in two dimensions, SIAM J. Sci. Comput., 20, 2160-2194 (1999) · Zbl 0939.65109 [105] Wang, H.; Ewing, R. E., Optimal-order convergence rates for Eulerian-Lagrangian localized adjoint methods for reactive transport and contamination in groundwater, Numer. Methods PDEs, 11, 1-31 (1995) · Zbl 0816.76074 [106] Wang, H.; Ewing, R. E.; Qin, G.; Lyons, S. L.; Al-Lawatia, M.; Man, S., A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations, J. Comput. Phys., 152, 120-163 (1999) · Zbl 0956.76050 [107] Wang, H.; Ewing, R. E.; Russell, T. F., Eulerian-Lagrangian localized methods for convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal., 15, 405-459 (1995) · Zbl 0830.65095 [108] Wang, H.; Liang, D.; Ewing, R. E.; Lyons, S. L.; Qin, G., An ELLAM-MFEM solution technique for compressible fluid flows in porous media with point sources and sinks, J. Comput. Phys., 159, 344-376 (2000) · Zbl 0979.76051 [111] Westerink, J. J.; Shea, D., Consider higher degree Petrov-Galerkin methods for the solution of the transient convection-diffusion equation, Int. J. Numer. Methods Eng., 28, 1077-1101 (1989) · Zbl 0679.76097 [112] Whitham, G., Linear and Nonlinear Waves (1974), Wiley: Wiley New York · Zbl 0373.76001 [113] Yang, D., A characteristic-mixed method with dynamic finite element space for convection-dominated diffusion problems, J. Comput. Appl. Math., 43, 343-353 (1992) · Zbl 0771.65065 [114] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1978) · Zbl 0416.76002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.