zbMATH — the first resource for mathematics

Nonabelian noncommutative gauge theory via noncommutative extra dimensions. (English) Zbl 0983.81054
Summary: The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background \(B\)-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich’s formality theorem allow an explicit construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with \(B\)-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant \(B\)-field, Poisson structure and metric.

81T13 Yang-Mills and other gauge theories in quantum field theory
81T75 Noncommutative geometry methods in quantum field theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
Full Text: DOI arXiv
[1] Madore, J.; Schraml, S.; Schupp, P.; Wess, J., Gauge theory on noncommutative spaces, Eur. phys. J. C, 16, 161, (2000)
[2] Callan, C.G.; Lovelace, C.; Nappi, C.R.; Yost, S.A.; Abouelsaood, A.; Callan, C.G.; Nappi, C.R.; Yost, S.A., Open strings in background gauge fields, Nucl. phys. B, Nucl. phys. B, 280, 599, (1987)
[3] Chu, C.; Ho, P.; Chu, C.; Ho, P., Constrained quantization of open string in background B field and noncommutative D-brane, Nucl. phys. B, Nucl. phys. B, 568, 447, (2000) · Zbl 0951.81093
[4] Schomerus, V., D-branes and deformation quantization, Jhep, 9906, 030, (1999)
[5] Connes, A.; Douglas, M.R.; Schwarz, A., Noncommutative geometry and matrix theory: compactification on tori, Jhep, 9802, 003, (1998)
[6] Douglas, M.R.; Hull, C., D-branes and the noncommutative torus, Jhep, 9802, 008, (1998)
[7] Morariu, B.; Zumino, B., Super yang – mills on the noncommutative torus, ()
[8] Taylor, W.I., D-brane field theory on compact spaces, Phys. lett. B, 394, 283, (1997)
[9] Seiberg, N.; Witten, E., String theory and noncommutative geometry, Jhep, 9909, 032, (1999)
[10] Andreev, O.; Dorn, H., On open string sigma-model and noncommutative gauge fields, Phys. lett. B, 476, 402, (2000) · Zbl 1050.81694
[11] Jurco, B.; Schupp, P., Noncommutative yang – mills from equivalence of star products, Eur. phys. J. C, 14, 367, (2000)
[12] Jurco, B.; Schupp, P.; Wess, J., Noncommutative gauge theory for Poisson manifolds, Nucl. phys. B, 584, 784, (2000) · Zbl 0984.81167
[13] Kontsevich, M., Deformation quantization of Poisson manifolds, I · Zbl 1058.53065
[14] Cornalba, L.; Schiappa, R., Nonassociative star product deformations for D-brane worldvolumes in curved backgrounds · Zbl 1042.81065
[15] Jurco, B.; Schupp, P.; Wess, J., Nonabelian noncommutative gauge fields and seiberg – witten map · Zbl 0983.81054
[16] Jurco, B.; Schraml, S.; Schupp, P.; Wess, J., Enveloping algebra valued gauge transformations for non-abelian gauge groups on non-commutative spaces, Eur. phys. J. C, 17, 521, (2000) · Zbl 1099.81525
[17] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Deformation theory and quantization. I. deformations of symplectic structures, Ann. phys., 111, 61, (1978) · Zbl 0377.53024
[18] Sternheimer, D., Deformation quantization: twenty years after · Zbl 0977.53082
[19] Cattaneo, A.S.; Felder, G., A path integral approach to the Kontsevich quantization formula, Commun. math. phys., 212, 591, (2000) · Zbl 1038.53088
[20] Schaller, P.; Strobl, T., Poisson structure induced (topological) field theories, Mod. phys. lett. A, 9, 3129, (1994) · Zbl 1015.81574
[21] Ikeda, N., Two-dimensional gravity and nonlinear gauge theory, Ann. phys., 235, 435, (1994) · Zbl 0807.53070
[22] Schaller, P.; Strobl, T.; Schaller, P.; Strobl, T., Introduction to Poisson sigma-models · Zbl 0885.58028
[23] Alekseev, A.Y.; Schaller, P.; Strobl, T., The topological G/G WZW model in the generalized momentum representation, Phys. rev. D, 52, 7146, (1995)
[24] Bonora, L.; Salizzoni, M., Renormalization of noncommutative U(N) gauge theories · Zbl 0977.81092
[25] Armoni, A., Comments on perturbative dynamics of non-commutative yang – mills theory, Nucl. phys. B, 593, 229, (2001) · Zbl 0971.81522
[26] Armoni, A.; Minasian, R.; Theisen, S., On non-commutative N=2 super yang – mills · Zbl 0969.81586
[27] Bichl, A.A.; Grimstrup, J.M.; Popp, L.; Schweda, M.; Wulkenhaar, R., Perturbative analysis of the seiberg – witten map · Zbl 1058.81056
[28] Bichl, A.A.; Grimstrup, J.M.; Popp, L.; Schweda, M.; Wulkenhaar, R., Deformed QED via seiberg – witten map · Zbl 1099.81520
[29] Connes, A.; Connes, A., Noncommutative geometry: year 2000, Noncommutative geometry, (1994), Academic Press · Zbl 0985.58003
[30] Moser, J., On the volume elements on a manifold, Trans. amer. math. soc., 120, 286, (1965) · Zbl 0141.19407
[31] Okuyama, K., A path integral representation of the map between commutative and noncommutative gauge fields, Jhep, 0003, 016, (2000) · Zbl 0959.81111
[32] Seiberg, N., A note on background independence in noncommutative gauge theories, matrix model and tachyon condensation, Jhep, 0009, 003, (2000) · Zbl 0989.81584
[33] Cornalba, L., D-brane physics and noncommutative yang – mills theory, Adv. Theor. Math. Phys., in press · Zbl 0997.81108
[34] Cornalba, L., Corrections to the abelian born – infeld action arising from noncommutative geometry, Jhep, 0009, 017, (2000) · Zbl 0989.81618
[35] Ishibashi, N., A relation between commutative and noncommutative descriptions of D-branes · Zbl 1021.81052
[36] Cornalba, L., On the general structure of the non-abelian born – infeld action · Zbl 1011.81060
[37] Arnal, D.; Manchon, D.; Masmoudi, M., Choix des signes pour la formalite de M. Kontsevich · Zbl 1055.53066
[38] Manchon, D., Poisson bracket, deformed bracket and gauge group actions in Kontsevich deformation quantization · Zbl 0981.53091
[39] P. Aschieri, private communication
[40] Das, S.R.; Rey, S.-J., Open Wilson lines in noncommutative gauge theory and tomography of holographic dual supergravity, Nucl. phys. B, 590, 453, (2000) · Zbl 0991.81117
[41] Mehen, T.; Wise, M.B., Generalized ∗-products, Wilson lines and the solution of the seiberg – witten equations, Jhep, 0012, 008, (2000) · Zbl 0990.81752
[42] Liu, H., ★-trek II: ★_n operations, open Wilson lines and the seiberg – witten map · Zbl 0972.81194
[43] Das, S.R.; Trivedi, S.P., Supergravity couplings to noncommutative branes, open Wilson lines and generalized star products
[44] Okuyama, K., Comments on open Wilson lines and generalized star products · Zbl 0977.81085
[45] Cannas du Silvia, A.; Weinstein, A., Geometric models for noncommutative algebras, (1999), AMS
[46] Madore, J., Modification of kaluza – klein theory, Phys. rev. D, 41, 3709, (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.