Dloussky, Georges; Oeljeklaus, Karl; Toma, Matei Surfaces of the class VII\(_0\) admitting a vector field. (Surfaces de la classe VII\(_0\) admettant un champ de vecteurs.) (French) Zbl 0984.32009 Comment. Math. Helv. 75, No. 2, 255-270 (2000). The authors prove that a compact complex surface of class \(\text{VII}_0\) with \(b_2>0\) admitting an action of \((\mathbb{C},+)\) contains exactly \(b_2\) rational curves. It follows that the surface is a deformation of a blown-up primary Hopf surface. Reviewer: P.E.Newstead (Liverpool) Cited in 1 ReviewCited in 10 Documents MSC: 32J15 Compact complex surfaces 32M05 Complex Lie groups, group actions on complex spaces 32S65 Singularities of holomorphic vector fields and foliations 57R30 Foliations in differential topology; geometric theory Keywords:holomorphic foliation; holomorphic vector fields; compact complex surface × Cite Format Result Cite Review PDF Full Text: DOI