zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Second-order differential operators with integral boundary conditions and generation of analytic semigroups. (English) Zbl 0984.34014
The class of differential expressions $l(u)=u''+q_1(x)u+q_0(x)x$ in $(a,b)$ with the integral boundary conditions $$B_iu=\int_a^bR_i(t)u(t) dt+\int_a^bS_i(t)u'(t) dt=0,\quad i=1,2,$$ is considered, with $q_0,R_i,S_i\in C([a,b];\bbfC)$ and $q_1\in C^1([a,b];\bbfC)$. Suppose that the boundary conditions are regular, i.e., one of the following conditions is satisfied: $S_1(a)S_2(b)-S_1(b)S_2(a)\ne 0$; $S_1=0$ and $R_1(a)S_2(b)+R_1(b)S_2(a)\ne 0$; $S_2=0$ and $R_2(a)S_1(b)+R_2(b)S_1(a)\ne 0$; $S_1=0$, $S_2=0$ and $R_1(a)R_2(b)-R_1(b)R_2(a)\ne 0$. As usual, the linear operator $L_1$ on $L^1(a,b)$ is associated with $l$, where the domain of $L_1$ is $D(L_1)=\{u\in W^{2,1}(a,b):B_i(u)=0,\ i=1,2\}$. It is shown that $L_1$ is the generator of an analytic semigroup $\{e^{tL_1}\}_{t\ge 0}$ of bounded linear operators on $L_1(a,b)$. The detailed proof uses the usual techniques of the location of the spectrum and estimates on the resolvent as an integral operator with the Green function as kernel.

34B15Nonlinear boundary value problems for ODE
34L15Eigenvalues, estimation of eigenvalues, upper and lower bounds for OD operators
47D06One-parameter semigroups and linear evolution equations
47D03(Semi)groups of linear operators
34B27Green functions
Full Text: DOI Link
[1] G.D. Birkhoff, On the asymptotic character of the solutions of certain linear differential equations containing a parameter , Trans. Amer. Math. Soc. 9 (1908), 219-231. JSTOR: · Zbl 39.0386.01 · doi:10.2307/1988652 · http://links.jstor.org/sici?sici=0002-9947%28190804%299%3A2%3C219%3AOTACOT%3E2.0.CO%3B2-L&origin=euclid
[2] --------, Boundary value problems and expansion problems of ordinary differential equations , Trans. Amer. Math. Soc. 9 (1908), 373-395. JSTOR: · Zbl 39.0386.02 · doi:10.2307/1988661 · http://links.jstor.org/sici?sici=0002-9947%28190810%299%3A4%3C373%3ABVAEPO%3E2.0.CO%3B2-M&origin=euclid
[3] J.M. Gallardo, Generation of analytic semigroups by second-order differential operators with nonseparated boundary conditions , Rocky Mountain J. Math. 30 (3) (2000), 869-899. · Zbl 0994.47042 · doi:10.1216/rmjm/1021477250 · http://math.la.asu.edu/~rmmc/rmj/VOL30-3/CONT30-3/CONT30-3.html
[4] T. Kato, Perturbation theory for linear operators , Springer-Verlag, New York, 1966. · Zbl 0148.12601
[5] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems , Birkhäuser, New York, 1995. · Zbl 0816.35001
[6] M.A. Naimark, Linear differential operators , Vols. I, II, Ungar Publishing, 1967. · Zbl 0219.34001