Otto, Felix The geometry of dissipative evolution equations: The porous medium equation. (English) Zbl 0984.35089 Commun. Partial Differ. Equations 26, No. 1-2, 101-174 (2001). The so-called porous medium equation (PME) \[ \frac{\partial \rho}{\partial t}- \Delta ^2 \rho^m = 0,\quad x\in\mathbb{R}^{N},\;t\in[0,\infty) \] models a fluid flow through a porous medium. An equation of parabolic type, in the case \( m > 1\) it is associated to small diffusion, while fast diffusion corresponds to \(m < 1\). Since in the latter situation no classical solution exists for nonzero initial data with compact support, weak solutions – with respect to both variables \(x,t\) – ought to be considered. The constraints \(m\geq 1 - \frac{1}{N}\) and \( m > \frac{N}{N+2}\) are assumed throughout this work.This equation exhibits conservation properties, namely: if \(\rho\) is nonnegative at the initial state, it remains so; besides, the total mass \(\int \rho\) is constant on time. It is shown that PME presents a gradient flow structure which is richer than the classical, and more well known, structure. Such a structure is obtained through a change in the metric definition for the manifold of possible solutions.This alternate approach, supported by physical and mathematical properties, allows a more clear way to deduce the asymptotical behavior of the solutions. Reviewer: Carlos A.De Moura (Flamengo) Cited in 10 ReviewsCited in 527 Documents MSC: 35K65 Degenerate parabolic equations 76S05 Flows in porous media; filtration; seepage 35Q35 PDEs in connection with fluid mechanics 35K55 Nonlinear parabolic equations Keywords:fluid flow; gradient flow; asymptotic behavior; metric tensor; differentiable manifold; conservation laws PDF BibTeX XML Cite \textit{F. Otto}, Commun. Partial Differ. Equations 26, No. 1--2, 101--174 (2001; Zbl 0984.35089) Full Text: DOI OpenURL References: [1] Adams R. A., Sobolev spaces (1975) [2] DOI: 10.1007/BF01176474 · Zbl 0497.35049 [3] Angenent S. B., Optimal asymptotics for solutions to the initial value problem for the porous medium equation (1991) [4] Arnold V. I., Ann. Institut Fourier 16 pp 319– (1966) · Zbl 0148.45301 [5] DOI: 10.1146/annurev.fl.24.010192.001045 [6] Arnold A., On logarithmic Sobolev inequalities, Csiszar–Kullback inequalities, and the rate to equilibrium for Fokker–Planck type equations (1998) [7] DOI: 10.1007/BFb0075847 [8] Barenblatt G. I., Prikl. Mat. Mech. 16 pp 679– (1952) [9] DOI: 10.1002/cpa.3160440402 · Zbl 0738.46011 [10] DOI: 10.1002/(SICI)1097-0312(199904)52:4<411::AID-CPA1>3.0.CO;2-3 · Zbl 0910.35098 [11] Caffarelli L. A., Lecture Notes in Pure and Applied Mathematics 177, in: Partial differential equations and applications pp 29– (1996) [12] DOI: 10.1090/S0002-9947-1979-0534112-2 [13] DOI: 10.1006/aima.1997.1634 · Zbl 0901.49012 [14] DOI: 10.1002/(SICI)1099-1476(19980910)21:13<1269::AID-MMA995>3.0.CO;2-O · Zbl 0922.35131 [15] Carrillo J. A., Asymptotic L 1–decay of solutions of the porous medium equation to self–similarity · Zbl 0963.35098 [16] DOI: 10.1090/S0273-0979-1992-00266-5 · Zbl 0755.35015 [17] DOI: 10.1090/S0002-9947-1983-0690039-8 [18] Dolbeault J., Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous medium problems [19] DOI: 10.2307/1970699 · Zbl 0211.57401 [20] Evans L. C., Partial differential equations and Monge–Kantorovich mass transfer · Zbl 0954.35011 [21] Evans L. C., Mem. Amer. Math. Soc. 137 (1999) [22] Friedman A., Trans. Amer. Math. Soc. 262 pp 551– (1980) [23] Gallot S., Riemannian Geometry (1987) [24] DOI: 10.1007/BF00387715 · Zbl 0828.57021 [25] Gangbo W., C. R. Acad. Sci. Paris 321 pp 1653– (1995) [26] DOI: 10.1007/BF02392620 · Zbl 0887.49017 [27] Givens C. R., Michigan Math. J. 31 pp 231– (1994) [28] DOI: 10.1007/BF01011161 · Zbl 0682.60109 [29] DOI: 10.1137/S0036141096303359 · Zbl 0915.35120 [30] Kamin S., Revista Matematica Iberoamericana 4 pp 339– (1988) · Zbl 0699.35158 [31] Kinderlehrer D., Approximations of parabolic equations based upon Wasserstein’s variational principle (1998) [32] DOI: 10.1016/S0167-2789(97)00094-8 [33] DOI: 10.1109/TIT.1967.1053968 [34] DOI: 10.1007/BF00264463 · Zbl 1302.60049 [35] DOI: 10.1063/1.526028 · Zbl 0583.76114 [36] DOI: 10.1007/s002050050073 · Zbl 0905.35068 [37] Otto F., Double degenerate diffusion equations as steepest descent, preprint 480 of the SFB 256 (1996) [38] Petersen P., Riemannian geometry (1998) [39] DOI: 10.1093/qjmam/12.4.407 · Zbl 0119.30505 [40] DOI: 10.1007/BF01759387 · Zbl 0874.45005 [41] Rachev S. T., Probability metrics and the stability of stochastic models (1991) · Zbl 0744.60004 [42] DOI: 10.1063/1.526029 · Zbl 0583.76115 [43] DOI: 10.1070/SM1987v056n01ABEH003025 · Zbl 0725.58005 [44] DOI: 10.1007/BF00535689 · Zbl 0389.60079 [45] Toscani G., Quarterly Appl. Math. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.