zbMATH — the first resource for mathematics

Integrable lattices. (English. Russian original) Zbl 0984.37093
Theor. Math. Phys. 118, No. 2, 173-182 (1999); translation from Teor. Mat. Fiz. 118, No. 2, 217-228 (1999).
In this paper integrable lattices corresponding to the Hamiltonians \[ H= p_xq_x+ V(p,q_x, q)\tag{1} \] are constructed, where \(V\) is a quadratic polynomial in \(p\) and \(q_x\). The authors are interested in only the two cases \[ H= p_xq_x+ q^2_x(\varepsilon p^2+\alpha p+ \beta)+ p^2(\gamma q_x+ \delta),\tag{2} \] where \(\varepsilon\), \(\alpha\), \(\beta\), \(\gamma\), and \(\delta\) are arbitrary parameters, and \[ H= p_x q_x- q^2_x p^2- p^2 r(q)- \textstyle{{1\over 2}} pr'(q)- \textstyle{{1\over 12}} r''(q),\tag{3} \] where \(r(q)\) is an arbitrary fourth-order polynomial in \(q\). Different choices of the parameters in (2) correspond to numerous integrable generalizations of the nonlinear Schrödinger equation. The authors discuss the Toda, Volterra and Heisenberg models in detail and obtain totally discrete Lagrangians. Moreover, they discuss the relation of this systems to the Hirota equations.

37K60 Lattice dynamics; integrable lattice equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35Q55 NLS equations (nonlinear Schrödinger equations)
Full Text: DOI
[1] R. Hirota,J. Phys. Soc. Japan,43, 2074 (1977);50, 3785 (1981). · Zbl 1334.39014 · doi:10.1143/JPSJ.43.2074
[2] V. E. Adler and A. B. Shabat,Theor. Math. Phys.,112, 935 (1997). · Zbl 0978.37504 · doi:10.1007/BF02634155
[3] V. G. Marikhin,JETP Lett.,66, 705 (1997). · doi:10.1134/1.567584
[4] R. M. Miura,J. Math. Phys.,9, 1202 (1968). · Zbl 0283.35018 · doi:10.1063/1.1664700
[5] A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov,Russ. Math. Surv.,42, 1 (1987). · Zbl 0646.35010 · doi:10.1070/RM1987v042n04ABEH001441
[6] Y. B. Suris,J. Phys. A.,30, 2235 (1997). · Zbl 0935.37037 · doi:10.1088/0305-4470/30/6/041
[7] F. W. Nijhoff, O. Ragnisco, and V. B. Kuznetsov,Commun. Math. Phys.,176, 681 (1996). · Zbl 0851.58025 · doi:10.1007/BF02099255
[8] R. I. Yamilov, ”Classification of Toda type scalar lattices,” in:Nonlinear Evolution Equations and Dynamical Systems, World Scientific, Singapore (1993), p. 423.
[9] V. É. Adler and R. I. Yamilov, Private communication.
[10] F. W. Nijhoff and V. Papageorgiou,Phys. Lett. A,141, 269 (1989). · doi:10.1016/0375-9601(89)90483-0
[11] V. É. Adler and A. B. Shabat,Theor. Math. Phys.,115, 639 (1998). · Zbl 0981.37029 · doi:10.1007/BF02575487
[12] I. Krichever, O. Lipan, P. Wiegmann, and A. Zabrodin, ”Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations,” Preprint hep-th/9604080 (1996). · Zbl 0995.37054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.