Completely conservative and oscillationless semi-Lagrangian schemes for advection transportation. (English) Zbl 0984.65086

Summary: We present a new type of semi-Lagrangian scheme for advection transportation equation. The interpolation function is based on a cubic polynomial and is constructed under the constraints of conservation of cell-integrated average and the slope modification. The cell-integrated average is defined via the spatial integration of the interpolation function over a single grid cell and is advanced using a flux form. Nonoscillatory interpolation is constructed by choosing proper approximation to the cell-center values of the first derivative of the interpolation function, which appears to be a free parameter in the present formulation. The resulting scheme is exactly conservative regarding the cell average of the advected quantity and does not produce any spurious oscillation. Oscillationless solutions to linear transportation problems were obtained. Incorporated with an entropy-enforcing numerical flux, the presented schemes can accurately compute shocks and sonic rarefaction waves when applied to nonlinear problems.


65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L45 Initial value problems for first-order hyperbolic systems
35L67 Shocks and singularities for hyperbolic equations
86A10 Meteorology and atmospheric physics


Full Text: DOI


[1] Akima, H., A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mach., 17, 589 (1970) · Zbl 0209.46805
[2] Bermejo, R.; Staniforth, A., The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes, Mon. Weather Rev., 120, 2622 (1992)
[3] Boris, J. P.; Book, D. L., Flux corrected transport. I. SHASTA: A fluid transport algorithm that works, J. Comput. Phys., 11, 38 (1973) · Zbl 0251.76004
[4] Collela, P.; Woodward, P. R., The piecewise parabolic method (PPM) for gas-dynamical simulations, J. Comput. Phys., 54, 174 (1984) · Zbl 0531.76082
[5] Durran, D. R., Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (1999)
[6] Fritsch, F. N.; Butland, J., An Improved Monote Piecewise Cubic Interpolation Algorithm (1980) · Zbl 0577.65003
[7] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly highorder accuracy essentially nonoscillatory schemes, III, J. Comput. Phys., 71, 231 (1987)
[8] Harten, A.; Osher, S., Uniformly high order accurate non-oscillatory schemes, I, SIAM J. Numer. Anal., 24, 279 (1987) · Zbl 0627.65102
[9] Holnicki, P., A piecewise-quintic interpolation scheme, J. Comput. Phys., 127, 316 (1996) · Zbl 0863.65001
[10] Hyman, J. H., Accurate monotonicity preserving cubic interpolations, SIAM J. Sci. Stat. Comput., 4, 645 (1983) · Zbl 0533.65004
[11] Jiang, G. S.; Shu, C. W., Efficient implementation of ENO schemes, J. Comput. Phys., 126, 202 (1996) · Zbl 0877.65065
[12] Lax, P. D.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 217 (1960) · Zbl 0152.44802
[13] Lin, S. J.; Rood, R. B., Multidimensional flux-form semi-Lagrangian transportation schemes, Mon. Weather Rev., 124, 2046 (1996)
[14] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200 (1994) · Zbl 0811.65076
[15] McDonald, A., Accuracy of multiply-upstream, semi-Lagrangian advection schemes, Mon. Weather Rev., 112, 1267 (1984)
[16] McDonald, A., Accuracy of multiply-upstream, semi-Lagrangian advection schemes, II, Mon. Weather Rev., 115, 1446 (1987)
[17] McDonald, A.; Bates, J. R., Improving the estimate of the departure point position in a two-time-level semi-Lagrangian and semi-implicit model, Mon. Weather Rev., 115, 737 (1987)
[18] McGregor, J. L., Economical determination of departure points for semi-Lagrangian models, Mon. Weather Rev., 121, 221 (1992)
[19] Moretti, G., A technique for integrating two-dimensional Euler equations, Comput. Fluids, 15, 59 (1987) · Zbl 0612.76083
[20] Osher, S., Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal., 31, 217 (1984) · Zbl 0592.65069
[21] Priestley, A., A quasi-conservation version of the semi-Lagrangian advection scheme, Mon. Weather Rev., 121, 621 (1993)
[22] Purnell, D. K., Solution of the advective equation by upstream interpolation with a cubic spline, Mon. Weather Rev., 104, 42 (1975)
[24] Smolarkiewicz, P. K.; Pudykiewicz, J. A., A class of semi-Lagrangian approximations for fluids, J. Atmos. Sci., 49, 2082 (1992)
[25] Staniforth, A.; Côté, J., Semi-Lagrangian integration scheme for atmospheric model—A review, Mon. Weather Rev., 119, 2206 (1991)
[26] Takacs, L. L., A two-step scheme for advection equation with minimized dissipation and dispersion errors, Mon. Weather Rev., 113, 1050 (1985)
[27] Tanaka, R.; Nakamura, T.; Yabe, T., Constructing exactly conservative scheme in a non-conservative form, Comput. Phys. Commun., 126, 232 (2000) · Zbl 0959.65097
[28] van Leer, B., Toward the ultimate conservative difference scheme. Part IV. A new approach to numerical convection, J. Comput. Phys., 23, 276 (1977) · Zbl 0339.76056
[29] van Leer, B., Toward the ultimate conservative difference scheme. Part V. A second order sequel to Godunov’s method, J. Comput. Phys., 32, 101 (1979) · Zbl 1364.65223
[30] Williamson, D. L.; Rasch, P. J., Two-dimensional semi-Lagrangian transport with shape-preserving interpolation, Mon. Weather Rev., 117, 102 (1989)
[31] Xiao, F., A class of single-cell high order semi-Lagrangian advection schemes, Mon. Weather Rev., 128, 1165 (2000)
[32] Xiao, F.; Yabe, T.; Ito, T., Constructing oscillation preventing scheme for advection equation by rational function, Comput. Phys. Commun., 93, 1 (1996) · Zbl 0921.76118
[33] Yabe, T.; Aoki, T., A universal solver for hyperbolic-equations by cubic-polynomial interpolation. 1. One-dimensional solver, Comput. Phys. Commun., 66, 219 (1991) · Zbl 0991.65521
[34] Yabe, T.; Ishikawa, T.; Wang, P. Y.; Aoki, T.; Kadota, Y.; Ikeda, F., A universal solver for hyperbolic-equations by cubic-polynomial interpolation. 2. 2-dimensional and 3-dimensional solvers, Comput. Phys. Commun., 66, 233 (1991) · Zbl 0991.65522
[35] Yabe, T.; Tanaka, R.; Nakamura, T.; Xiao, F., Exactly conservative semi-Lagrangian scheme (CIP-CSL) in one dimension, Mon. Wea. Rev., 129, 332 (2001)
[36] Yang, H. Q.; Przekwas, A. J., A comparative study of advanced shock-capturing schemes applied to Burger’s equation, J. Comput. Phys., 102, 139 (1992) · Zbl 0759.76053
[37] Zalesak, S. T., Fully multidimensional flux corrected transport algorithm for fluids, J. Comput. Phys., 31, 335 (1979) · Zbl 0416.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.