zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Error estimates for moving least square approximations. (English) Zbl 0984.65096
We obtain error estimates for moving least square approximations in the one-dimensional case. For the application of this method to the numerical solution of differential equations it is fundamental to have error estimates for the approximations of derivatives. We prove that, under appropriate hypothesis on the weight function and the distribution of points, the method produces optimal order approximations of the function and its first and second derivatives. As a consequence, we obtain optimal order error estimates for Galerkin approximations of coercive problems. Finally, as an application of the moving least square method we consider a convection-diffusion equation and propose a way of introducing up-wind by means of a non-symmetric weight function. We present several numerical results showing the good behavior of the method.

65M15Error bounds (IVP of PDE)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
35K15Second order parabolic equations, initial value problems
Full Text: DOI
[1] Belytschko, T.; Lu, Y. Y.; Gu, L.: A new implementation of the element free Galerkin method. Comput. methods appl. Mech. eng. 113, 397-414 (1994) · Zbl 0847.73064
[2] Belytschko, T.; Krysl, P.: Element-free Galerkin method: convergence of the continuous and discontinuous shape functions. Comput. methods appl. Mech. eng. 148, 257-277 (1997) · Zbl 0918.73125
[3] Brenner, S. C.; Scott, L. R.: The mathematical theory of finite element methods. (1994) · Zbl 0804.65101
[4] Ciarlet, P. G.: The finite element method for elliptic problems. (1978) · Zbl 0383.65058
[5] Johnson, L. W.; Riess, R. D.: Numerical analysis. (1982) · Zbl 0557.65001
[6] Lancaster, P.; Salkauskas, K.: Surfaces generated by moving least squares methods. Math. comp. 37, 141-158 (1981) · Zbl 0469.41005
[7] Levin, D.: The approximation power of moving least-squares. Math. comp. 67, 1335-1754 (1998) · Zbl 0911.41016
[8] Marano, M.: Mejor aproximación local. Tesis de doctorado en matemáticas (1986)
[9] Motzkin, T. S.; Walsh, J. L.: Polynomials of best approximation on a real finite point set. Trans. am. Math. soc. 91, 231-245 (1959) · Zbl 0089.04801
[10] Rice, J. R.: Best approximation and interpolating functions. Trans. amer. Math. soc. 101, 477-498 (1961) · Zbl 0146.08302
[11] Roos, H. G.; Stynes, M.; Tobiska, L.: Numerical methods for singularity perturbed differential equations. (1996) · Zbl 0844.65075
[12] Shepard, D.: A two-dimensional interpolation function for irregularly spaced points. Proc. ACM natl. Conf., 517-524 (1968)
[13] Taylor, R.; Zienkiewicz, O. C.; Oñate, E.; Idelsohn, S.: Moving least square approximations for the solution of differential equations. Technical report (1995)