×

zbMATH — the first resource for mathematics

Existence results for unilateral quasistatic contact problems with friction and adhesion. (English) Zbl 0984.74054
Summary: We consider a two-dimensional elastic body submitted to unilateral contact conditions, local friction and adhesion on a part of boundary. After discretizing the variational formulation with respect to time, we use a smoothing technique to approximate the friction term by an auxiliary problem. A shifting technique enables us to obtain the existence of incremental solutions with bounds independent of the regularization parameter. Finally, we obtain the existence of quasistatic solution by passing to the limit with respect to time.

MSC:
74M15 Contact in solid mechanics
74G25 Global existence of solutions for equilibrium problems in solid mechanics (MSC2010)
49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI Link EuDML
References:
[1] L. Cangémi, Frottement et adhérence: modèle, traitement numérique et application à l’interface fibre matrice. PhD thesis, University of Aix-Marseille II (1997).
[2] M. Raous, L. Cangémi and M. Cocu, Un modèle couplant adhérence et frottement pour le contact unilatéral entre deux solides déformables. C. R. Acad. Sci., Paris, Série II b, t. 325 (1997) 503-509. Zbl0896.73051 · Zbl 0896.73051 · doi:10.1016/S1251-8069(97)89074-4
[3] M. Raous, L. Cangémi and M. Cocu, A consistent model coupling adhesion friction and unilateral contact. Comput. Methods Appl. Mech. Engrg.177 (1999) 383-399. Zbl0949.74008 · Zbl 0949.74008 · doi:10.1016/S0045-7825(98)00389-2
[4] R. Rocca, Existence of a solution for a quasistatic problem of unilateral contact with local friction. C. R. Acad. Sci., Paris, Série I. 328 (1999) 1253-1258. Zbl0935.74054 · Zbl 0935.74054 · doi:10.1016/S0764-4442(99)80449-2
[5] R. Rocca and M. Cocu, Existence and approximation of a solution to quasistatic Signorini problem with local friction. Int. J. Engrg. (to appear). · Zbl 1210.74126 · doi:10.1016/S0020-7225(00)00089-6
[6] R. Rocca, Analyse mathématique et numérique de problèmes quasi statique de contact unilatéral avec frottement local de Coulomb en élasticité, Ph.D. Thesis. Université d’Aix Marseille I (2000).
[7] Andersson L.-E, Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim. (to appear). · Zbl 0972.35058 · doi:10.1007/s002450010009
[8] M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact. Int. J. Engrg. Sci.34 (1996) 783-798. Zbl0900.73684 · Zbl 0900.73684 · doi:10.1016/0020-7225(95)00121-2
[9] J. Jarušek, Contact problems with bounded friction coercive case. Czechoslovak Math. J.33 (1983) 237-261. · Zbl 0519.73095 · eudml:13380
[10] C. Eck and J. Jarušek, Existence results for the static contact problem with Coulomb friction, Math. Models Methods Appl. Sci.8(1998) 445-468. · Zbl 0907.73052 · doi:10.1142/S0218202598000196
[11] R.A. Adams, Sobolev spaces. Academic Press, New York (1975). · Zbl 0314.46030
[12] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes, Vol. I. Dunod, Paris (1967).
[13] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I. Springer Verlag, New York (1993). · Zbl 0794.47033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.