A damage model for the dynamic fragmentation of brittle solids. (English) Zbl 0984.74073

Summary: Impact produces high stress waves leading to the degradation of brittle materials such as ceramics. Here, based on a probabilistic approach, we examine single and multiple fragmentation. The deterministic nature of numerical simulations is discussed with respect to stress rate and volume, and a damage model is proposed to account for dynamic loadings. Characteristic parameters are used to choose the mesh size. The mesh sensitivity is studied on a spalling configuration, and numerical predictions are compared with experimental data obtained on edge-on-impact configurations.


74R15 High-velocity fracture
74M20 Impact in solid mechanics
Full Text: DOI


[1] P.C. den Reijer, Impact on ceramic faced armor, Ph.D. dissertation, Delft Technical University, 1991
[2] G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials, Int. J. Solids Struct. 33 (20-22) (1996) 2899-2938 · Zbl 0929.74101
[3] Monaghan, J.J., Smoothed particle hydrodynamics, Annu. rev. astron. astrophys., 30, 543-574, (1992)
[4] Libersky, L.D.; Petscheck, A.G., High strain Lagrangian hydrodynamics, J. comp. phys., 109, 67-75, (1993) · Zbl 0791.76065
[5] S. Hiermaier, W. Riedel, Numerical simulation of failure in brittle materials using smooth particle hydrodynamics, in: Proceedings of the New Models and Numerical codes for Shock Wave Processes in Condensed Media, 1997
[6] Budiansky, B.; O’Connell, R.J., Elastic moduli of a cracked system, Int. J. solids struct., 12, 81-97, (1976) · Zbl 0318.73065
[7] Margolin, L.G., Elasticity moduli of a cracked body, Int. J. fract., 22, 65-79, (1983)
[8] Taylor, L.M.; Chen, E.-P.; Kuszmaul, J.S., Microcrack-induced damage accumulation in brittle rocks under dynamic loading, Comp. meth. appl. mech. eng., 55, 301-320, (1986) · Zbl 0571.73108
[9] A.M. Rajendran, Modeling the impact behavior of AD85 ceramic under multiaxial loading, Int. J. Impact Eng. 15 (6) (1994) 749-768
[10] Lemaitre, J., A course on damage mechanics, (1992), Springer Berlin, Germany
[11] C. Denoual, C.E. Cottenot, F. Hild, On the identification of damage during impact of a ceramic by a hard projectile, in: Proceedings of the 16th International Conference on BALLISTICS, APDS, Arlington, VA, USA, 1996, pp. 541-550
[12] E. Strassburger, H. Senf, H. Rothenhausler, Fracture propagation during impact in three types of ceramics, J. Physique IV coll. C8 (Suppl. IV) (1994) 653-658
[13] P. Riou, Contribution à l’étude de l’endommagement du carbure de silicium lors d’un impact de basse énergie : application aux blindages, Ph.D. dissertation, École Nationale Supérieure des Mines de Paris, 1996
[14] W. Weibull, A statistical theory of the strength of materials, Roy. Swed. Inst. Eng. Res., 151, 1939
[15] Davies, D.G.S., The statistical approach to engineering design in ceramics, Proc. brit. ceram. soc., 22, 429-452, (1973)
[16] P. Riou, C. Denoual, C.E. Cottenot, Visualization of the damage evolution in impacted ceramic carbide ceramics, Int. J. Impact Eng. 21 (4) (1998) 225-235
[17] M.F. Kanninen, C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press, New York, 1985 · Zbl 0587.73140
[18] J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982 · Zbl 0565.92001
[19] Jeulin, D., Anisotropic rough surface modeling by random morphological functions, Acta stereol, 6, 183-189, (1987)
[20] C. Denoual, G. Barbier, F. Hild, A probabilistic approach for fragmentation of ceramics under impact loading, C.R. Acad. Sci. Paris 325 [Série IIb] (1997) 685-691 · Zbl 0897.73047
[21] Grady, D.E.; Kipp, M.E., Continuum modeling of explosive fracture in oil shale, Int. J. rock MIN. sci. geomech., 17, 147-157, (1980)
[22] Y.N. Rabotnov, Creep Problems in Structural Members, North-Holland, Amsterdam, Netherlands, 1969 · Zbl 0184.51801
[23] C. Denoual, P. Riou, Comportement à l’impact de céramiques techniques pour blindages légers, CREA, Report 95 R 005, 1995
[24] Kachanov, M., Elastic solids with many cracks and related problems, Adv. appl. mech., 30, 259-445, (1994) · Zbl 0803.73057
[25] A. Dragon, D. Halm, A model of anisotropic damage by macrocrack growth; unilateral effect, in: Proceedings Workshop on the Mechanical Behavior of Damaged Solids, Fontainebleau, France, 1995 · Zbl 0920.73321
[26] S. Murakami, N. Ohno, A continuum theory of creep and creep damage, in: Proceedings Creep in Structures, Springer, Berlin, 1981, pp. 422-444
[27] A. Burr, F. Hild, F.A. Leckie, Micro-mechanics and continuum damage mechanics, Arch. Appl. Mech. 65 (7) (1995) 437-456 · Zbl 0855.73064
[28] Pamshock, User’s manual, ESI, 1996
[29] E. Strassburger, H. Senf, Experimental investigations of wave and fracture phenomena in impacted ceramics and glasses, ARL, Report ARL-CR-214, 1995
[30] T. Bertin-Mourot, C. Denoual, G. Dehors, P.-F. Louvigné, T. Thomas, High speed photography of Moiré fringes – application to ceramics under impact, J. Physique IV Coll. C3 (Suppl. III) (1997) 311-316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.