zbMATH — the first resource for mathematics

Blocks of homogeneous effect algebras. (English) Zbl 0985.03063
An effect algebra is called homogeneous iff \(u\leq v_1\oplus v_2\), \(u\leq (v_1\oplus v_2)'\) imply that \(u=u_1\oplus u_2\) for some \(u_1\leq v_1\), \(u_2\leq v_2\). The author proves that every homogeneous effect algebra is the union of all its maximal MV-subalgebras. This generalizes previous results obtained for special classes of homogeneous effect algebras, namely for lattice effect algebras [Z. Riečanová, “Generalization of blocks for \(D\)-lattices and lattice-ordered effect algebras”, Int. J. Theor. Phys. 39, 231-237 (2000; Zbl 0968.81003)] and orthoalgebras [J. Hamhalter, M. Navara and P. Pták, “States on orthoalgebras”, Int. J. Theor. Phys. 34, 1439-1465 (1995; Zbl 0841.03034)]. On the other hand, effect algebras of selfadjoint operators of Hilbert spaces of dimension greater than 1 are not homogeneous.

03G12 Quantum logic
06C15 Complemented lattices, orthocomplemented lattices and posets
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
06D35 MV-algebras
Full Text: DOI arXiv
[1] Riečanová, Int. J. Theor. Phys. 39 pp 855– (2000)
[2] Giuntini, Found. Phys. 19 pp 769– (1994)
[3] DOI: 10.1007/BF02283036 · Zbl 1213.06004
[4] Cohen, An introduction to Hilbert space and quantum logic (1989) · Zbl 0664.46021
[5] Chovanec, Tatra Mt. Math. Publ. 10 pp 1– (1997)
[6] Chevalier, Some ideal lattices in partial abelian monoids (1998)
[7] DOI: 10.2307/1993423 · Zbl 0093.01104
[8] Bush, Operational quantum physics (1995)
[9] Beran, Orthomodular lattices. Algebraic approach (1985)
[10] DOI: 10.1007/BF02057883
[11] Riečanová, Tatra Mt. Math. Publ. 16 pp 1– (1998)
[12] Pták, Orthomodular structures as quantum logics (1991)
[13] Ludwig, Foundations of quantum mechanics (1983) · Zbl 0509.46057
[14] Kôpka, Math. Slovaca 44 pp 21– (1994)
[15] Kalmbach, Orthomodular lattices (1983)
[16] Jenča, BUSEFAL 80 pp 24– (1999)
[17] DOI: 10.1007/s000120050061 · Zbl 0933.03082
[18] DOI: 10.1007/BF01108592 · Zbl 0846.03031
[19] Foulis, Internat. J. Theoret. Phys. 35 pp 789– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.