×

zbMATH — the first resource for mathematics

Complex automorphism groups of real algebraic curves of genus 2. (English) Zbl 0985.14013
A real algebraic curve \((X, \sigma)\) is a smooth irreducible projective curve \(X\) of genus \(g\) together with an anti-conformal involution \(\sigma\). The real automorphism group \(\text{Aut}( X, \sigma)\) of \(X\) consists of those conformal automorphisms from \(\text{Aut}(X)\) which commute with \(\sigma\). The author fully classifies all groups which can be obtained as real automorphism groups of genus 2 surfaces.

MSC:
14H37 Automorphisms of curves
14E07 Birational automorphisms, Cremona group and generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alling, N.L.; Greenleaf, N., Foundations of the theory of Klein surfaces, Lecture notes in mathematics, Vol. 219, (1971), Springer
[2] Broughton, A.; Bujalance, E.; Costa, A.F.; Gamboa, J.M.; Gromadzki, G., Symmetries of accola – maclachlan and kulkarni surfaces, Proc. amer. math. soc., 127, 637-646, (1999) · Zbl 0921.14019
[3] E. Bujalance, J.A. Bujalance, G. Gromadzki, E. Martı́nez, The groups of automorphisms of non-orientable hyperelliptic Klein surfaces without boundary, Proc. Korea Groups, Lecture Notes in Mathematics, Vol. 1398, Springer, 1988, pp. 43-51. · Zbl 0682.20035
[4] Bujalance, E.; Costa, A.F.; Gromadzki, G.; Singerman, D., Automorphism groups of complex doubles of Klein surfaces, Glasgow math. J., 36, 313-330, (1994) · Zbl 0810.30035
[5] Bujalance, E.; Etayo, J.J.; Gamboa, J.M.; Gromadzki, G., Automorphism groups of compact bordered Klein surfaces, Lecture notes in mathematics, Vol. 1439, (1990), Springer Berlin · Zbl 0709.14021
[6] Bujalance, E.; Gamboa, J.M., Automorphism groups of algebraic curves of \(R\^{}\{n\}\) of genus 2, Arch. math., 42, 229-237, (1984) · Zbl 0522.14016
[7] Bujalance, E.; Singerman, D., The symmetry type of a Riemann surface, Proc. London math. soc., 51, 3, 501-519, (1985) · Zbl 0545.30032
[8] F.J. Cirre, On the birational classification of hyperelliptic real algebraic curves in terms of their equations, submitted for publication. · Zbl 1105.14079
[9] F.J. Cirre, On the moduli of real algebraic curves of genus 2, submitted for publication. · Zbl 1055.14025
[10] Costa, A.F.; Porto, A.M., On the automorphism group of the canonical double covering of bordered Klein surfaces with large automorphism groups, J. math. sci., 82, 6, 3773-3779, (1996) · Zbl 0889.30032
[11] Gromadzki, G.; Izquierdo, M., Real forms of a Riemann surface of even genus, Proc. amer. math. soc., 126, 3475-3479, (1998) · Zbl 0913.20029
[12] Gross, B.H.; Harris, J., Real algebraic curves, Ann. sci. école norm. sup., 14, 157-182, (1981) · Zbl 0533.14011
[13] May, C.L., Complex doubles of bordered Klein surfaces with maximal symmetry, Glasgow math. J, 33, 61-71, (1991) · Zbl 0718.30032
[14] S.M. Natanzon, Klein surfaces, Uspekhi Mat. Nauk 45 (6) (1990) 47-90 (Russian Math. Surveys 45 (6) (1990) 43-108).
[15] Riera, G., Automorphisms of abelian varieties associated with Klein surfaces, J. London math. soc., 51, 2, 442-452, (1995) · Zbl 0827.14020
[16] Seppälä, M.; Sorvali, T., Geometry of Riemann surfaces and Teichmüller spaces, Mathematics studies, Vol. 169, (1992), North-Holland Amsterdam
[17] Silhol, R., Real abelian varieties and the theory of comesatti, Math. Z., 181, 345-364, (1982) · Zbl 0492.14015
[18] Weichold, G., Über symmetrische riemannsche flächen und die periodizitätsmodulen der zugerhörigen abelschen normalintegrale erstes gattung, Dissertation, Leipzig, (1883)
[19] Wiman, A., Über die hyperelliptischen kurven und diejenigen vom geschlecht p=3, welche eindeutige transformationen in sich zulassen, Bihang till. kungl. svenska vetenskaps-akademiens handlingar, 21, 1, 23, (1895) · JFM 26.0658.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.