zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic behavior of solutions of nonlinear Volterra equations and mean points. (English) Zbl 0985.45007
The author studies an asymptotic behavior at infinity of the solutions of the nonlinear Volterra equation $$(V_{b,g,f}) u(t)+\int_0^t b(t-s)(Au(s)+g(s)u(s)) ds \ni f(t), \quad t\ge 0$$ where $b\in AC_{\text{loc}}(R^+;R)$, $b(0)=1$; $b^\prime\in BV_{\text{loc}}(R^+;R)$; $g\in C(R^+;R^+)$; $f\in W^{1,1}_{\text{loc}}(R^+;X)$, $f(0)\in \overline{D(A)}$ and $R^+=[0,\infty).$ Here $A$ is an accretive operator in real reflexive Banach space $X$. Basing on the mean point, the weak and strong convergences for the “unbounded behavior” of solutions are given. The case $V_{1,0,0}$ was earlier considered from this point of view by {\it W. Takahashi} [J. Math. Anal. Appl. 109, 130-139 (1985; Zbl 0593.47057)].

MSC:
45M05Asymptotic theory of integral equations
45G10Nonsingular nonlinear integral equations
WorldCat.org
Full Text: DOI
References:
[1] Aizicovici, S.; Londen, S. O.; Reich, S.: Asymptotic behavior of solutions to a class of nonlinear Volterra equations. Differential integral equations 3, 813-825 (1990) · Zbl 0724.45017
[2] Baillon, J. B.; Clément, P.: Ergodic theorems for nonlinear Volterra equations in Hilbert space. Nonlinear anal. 5, 789-801 (1981) · Zbl 0541.45009
[3] Clément, P.: On abstract Volterra equations with kernels having a positive resolvent. Israel J. Math. 36, 193-200 (1980) · Zbl 0451.45012
[4] Clément, P.; Nohel, J. A.: Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. anal. 12, 514-535 (1981) · Zbl 0462.45025
[5] Crandall, M. G.; Nohel, J. A.: An abstract functional differential equation and a related nonlinear Volterra equation. Israel J. Math. 29, 313-328 (1978) · Zbl 0373.34035
[6] Crandall, M. G.: Nonlinear semigroups and evolution governed by accretive operators. Proceedings of symposia in pure mathematics 45, 305-338 (1986) · Zbl 0637.47039
[7] Day, M. M.: Amenable semigroups. Illinois J. Math. 1, 509-544 (1957) · Zbl 0078.29402
[8] Fan, K.; Glicksberg, I.: Some geometric properties of the sphere in a normed linear space. Duke math. J. 25, 553-568 (1958) · Zbl 0084.33101
[9] Gripenberg, G.: Volterra integro-differential equations with accretive nonlinearity. J. differential equations 60, 57-79 (1985) · Zbl 0575.45013
[10] Hirano, N.: Asymptotic behavior of solutions of nonlinear Volterra equations. J. differential equations 47, 163-179 (1983) · Zbl 0462.45026
[11] Hulbert, D. S.; Reich, S.: Asymptotic behavior of solutions to nonlinear Volterra integral equations. J. math. Anal. appl. 104, 155-172 (1984) · Zbl 0589.45006
[12] Jr., M. M. Israel; Reich, S.: Asymptotic behavior of solutions of a nonlinear evolution equation. J. math. Anal. appl. 83, 43-53 (1981) · Zbl 0508.47060
[13] Kato, N.; Kobayashi, K.; Miyadera, I.: On the asymptotic behavior of solutions of evolution equations associated with nonlinear Volterra equations. Nonlinear anal. 9, 419-430 (1985) · Zbl 0581.47053
[14] Kato, N.: On the asymptotic behavior of solutions of nonlinear Volterra equations. J. math. Anal. appl. 120, 419-430 (1986) · Zbl 0581.47053
[15] Kato, N.: Unbounded behavior and convergence of solutions of nonlinear Volterra equations in Banach spaces. Nonlinear anal. 12, 1193-1201 (1988) · Zbl 0722.47054
[16] Kobayasi, K.: On the asymptotic behavior for a certain nonlinear evolution equation. J. math. Anal. appl. 101, 555-561 (1984) · Zbl 0556.47033
[17] Miller, R. K.: Nonlinear Volterra integral equations. Mathematics lecture notes series (1971) · Zbl 0448.45004
[18] Lakshmikantham, V.; Leela, S.: Nonlinear differential equations in abstract spaces. International series in nonlinear mathematics 2 (1981) · Zbl 0456.34002
[19] Nohel, J. A.: Nonlinear Volterra equations for heat flow in materials with memory. Lecture notes in pure and applied mathematics 67 (1981) · Zbl 0465.45017
[20] Reich, S.: On the asymptotic behavior of nonlinear semigroups and the range of accretive operators. J. math. Anal. appl. 79, 113-126 (1981) · Zbl 0457.47053
[21] S. Reich, Admissible pairs and integral equations, Preprint MT-680, Technion, Preprint Series, 1985. · Zbl 0615.45009
[22] Takahashi, W.: The asymptotic behavior of nonlinear semigroups and invariant means. J. math. Anal. appl. 109, 130-139 (1985) · Zbl 0593.47057