×

zbMATH — the first resource for mathematics

Differential invariants and curved Bernstein-Gelfand-Gelfand sequences. (English) Zbl 0985.58002
The authors present a simple construction of the Bernstein-Gelfand-Gelfand sequences of natural differential operators on a manifold with parabolic geometry. This method also allows to define the additional structure of a bilinear differential “cup product” satisfying the Leibniz rule up to curvature terms. The construction is illustrated in the case of conformal differential geometry.

MSC:
58A15 Exterior differential systems (Cartan theory)
53A30 Conformal differential geometry (MSC2010)
58J99 Partial differential equations on manifolds; differential operators
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Kodaira, On deformations of complex analytic structures I II, Math 67 pp 328– (1958) · Zbl 1307.14016
[2] Calderbank, The Faraday - form in Einstein - Weyl geometry Warwick preprint to appear in, Math Scand 23 (1998)
[3] Gauduchon, Structures de Weyl et theÂoreÁmes d annulation sur une varieÂte conforme autoduale Norm, Sup Pisa 18 pp 563– (1991)
[4] Calderbank, MoÈbius structures and two dimensional Einstein - Weyl geometry reine, angew Math pp 504– (1998)
[5] Baston, Almost hermitian symmetric manifolds II Di erential invariants Duke, Math J 63 pp 113– (1991) · Zbl 0724.53020
[6] Lepowsky, A generalization of the Bernstein - Gelfand - Gelfand resolution, Algebra 49 pp 496– (1977) · Zbl 0381.17006
[7] Markl, A cohomology theory for A m - algebras and applications Pure, Appl Algebra 83 pp 141– (1992) · Zbl 0801.55004
[8] Schmalz, The geometry of hyperbolic and elliptic CR manifolds of codimension two to appear in Asian, Math
[9] Besse, Einstein manifolds Springer Berlin Heidelberg, Ergeb Math Grenzgeb 10 (1987)
[10] Gugenheim, On the extended functoriality of Tor and Cotor Pure, Appl Algebra 4 pp 9– (1974) · Zbl 0358.18015
[11] Ochiai, Geometry associated with semisimple at homogeneous spaces, Trans Amer Math Soc pp 152– (1970) · Zbl 0205.26004
[12] Lichnerowicz, Spin manifolds Killing spinors and universality of the Hijazi inequality, Lett Math Phys 13 pp 331– (1987) · Zbl 0624.53034
[13] Kostant, Lie algebra cohomology and the generalized Borel - Weil theorem, Math 74 pp 329– (1961) · Zbl 0134.03501
[14] Gerstenhaber, On the deformation of rings and algebras, Math 79 pp 59– (1964) · Zbl 0123.03101
[15] Graham, Conformally invariant powers of the Laplacian II : Nonexistence London, Math Soc 46 pp 566– (1992) · Zbl 0726.53011
[16] Yamaguchi, Di erential systems associated with simple graded Lie algebras in : Progress in di erential geometry Stud Pure Japan, Math Math Soc 22 pp 413– (1993)
[17] Bernstein, Gel fand and Gel fand Structure of representations generated by vectors of highest weight, Funct Anal Appl 5 pp 1– (1971) · Zbl 0246.17008
[18] Merkulov, Strong homotopy algebras of a KaÈhler manifold, Internat Math Res Notices pp 153– (1999) · Zbl 0995.32013
[19] Fegan, Conformally invariant rst order di erential operators Quart, Math Oxford 27 pp 371– (1976) · Zbl 0334.58016
[20] LeBrun, Explicit self - dual metrics on CP, Geom 2 pp 223– (1991) · Zbl 0725.53067
[21] CÏap, Invariant operators on manifolds with almost hermitian symmetric struc - tures Invariant di erentiation Acta, Math Univ Comenianae 66 pp 33– (1997)
[22] CÏap, Invariant operators on manifolds with almost hermitian symmetric structures III Standard operators, Geom Appl 12 pp 51– (2000) · Zbl 0969.53004
[23] Baston, Verma modules and di erential conformal invariants, Geom 32 pp 851– (1990) · Zbl 0732.53011
[24] Donaldson, Connected sums of self - dual manifolds and deformations of singular spaces, Nonlin 2 pp 197– (1989) · Zbl 0671.53029
[25] Cartan, Les systeÁmes de Pfa aÁ cinq variables et les eÂquations aux deriveÂes partielles du second ordre, Ec Norm Sup 27 pp 109– (1910)
[26] Tanaka, On the equivalence problem associated with simple graded Lie algebras Hokkaido, Math 8 pp 23– (1979)
[27] Gugenheim, Perturbation theory and di erential homological algebra II Illinois, J Math 35 pp 359– (1991)
[28] Baston, Almost hermitian symmetric manifolds I Local twistor theory Duke, Math J 63 pp 81– (1991) · Zbl 0724.53019
[29] CÏap, Invariant operators on manifolds with almost hermitian symmetric structures II Normal Cartan connections Acta, Math Univ Comenianae 66 pp 203– (1997)
[30] Eastwood, Semiholonomic Verma modules, Algebra pp 197– (1997) · Zbl 0907.17010
[31] Eastwood, Conformally invariant di erential operators on Minkowski space and their curved analogues Erratum, Commun Math Phys Commun Math Phys 109 pp 207– (1987) · Zbl 0659.53047
[32] Sharpe, Di erential geometry Springer Grad Texts New York, Math (1997)
[33] Johansson, Transferring algebra structures up to homology equivalence to appear in Math, Scand · Zbl 1023.16010
[34] SoucÏek, Cli ord analysis for higher spins in : Cli ord algebras and their applications in mathematical physics Fund Theories Kluwer Dordrecht Calderbank and Diemer Di erential invariants and curved BGG sequences Homotopy associativity of - spaces I II, Phys Acad Publ Trans Amer Math Soc 55 pp 275– (1993)
[35] Branson, Second order conformal covariants, Proc Amer Math Soc 126 pp 1031– (1998) · Zbl 0890.47030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.