zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. (English) Zbl 0985.85002
Summary: The generalized Fermi-Dirac functions and their derivatives are important in evaluating the thermodynamic quantities of partially degenerate electrons in hot dense stellar plasmas. New recursion relations of the generalized Fermi-Dirac functions have been found. An effective numerical method to evaluate the derivatives of the generalized Fermi-Dirac functions up to third order with respect to both degeneracy and temperature is then proposed, following {\it J. M. Aparicio} [Astrophys. J. Suppl. 117, 627-632 (1998)]. A Fortran program based on this method, together with a sample test case, is provided. Accuracy and domain of reliability of some other, popularly used analytic approximations of the generalized Fermi-Dirac functions of extreme conditions are investigated and compared with our results.

85A15Galactic and stellar structure
85-08Computational methods (astronomy and astrophysics)
Full Text: DOI
[1] Chandrasekhar, S.: An introduction to the study of stellar structure. (1939) · Zbl 65.1543.02
[2] Christensen-Dalsgaard, J.; Däppen, W.: Astron. astrophys. Rev.. 4, 267 (1992)
[3] Cox, J. P.; Giuli, R. T.: Principles of stellar structure, vol. 2: applications to stars. (1968)
[4] Miralles, J. A.; Van Riper, K. A.: Ap.j.s.s.. 105, 407 (1996)
[5] Pichon, B.: Comput. phys. Commun.. 55, 127 (1989)
[6] Bludman, S. A.; Van Riper, K. A.: Ap.j.. 212, 859 (1977)
[7] Pols, O. R.; Tout, C. A.; Eggleton, P. P.; Han, Z.: Monthly notices roy. Astronom. soc.. 274, 964 (1995)
[8] Eggleton, P. P.; Faulkner, J.; Flannery, B. P.: Astron. astrophys.. 23, 325 (1973)
[9] Elliot, J. R.; Kosovichev, A. G.: Ap.j.. 500, L199 (1998)
[10] Sagar, R. P.: Ap.j.. 376, 364 (1991)
[11] Gautschi, W.: Comput. phys. Commun.. 74, 233 (1993)
[12] Natarajan, A.; Mohabkumar, N.: Comput. phys. Commun.. 76, 48 (1993)
[13] Mohabkumar, N.; Natarajan, A.: Ap.j.. 458, 233 (1996)
[14] Aparicio, J. M.: Ap.j.s.s.. 117, 627 (1998)
[15] Däppen, W.; Mihalas, D.; Hummer, D. G.; Mihalas, B. W.: Ap.j.. 332, 261 (1988)
[16] Gong, Z. G.; Däppen, W.; Zejda, L.: Ap.j.. 546, 1178 (2001)