×

A general framework to design stabilizing nonlinear model predictive controllers. (English) Zbl 0985.93023

Summary: We propose a new model predictive control (MPC) framework to generate feedback controls for time-varying nonlinear systems with input constraints. We provide a set of conditions on the design parameters that permits the stabilizing properties of the control strategies under consideration to be verified a priori. The supplied sufficient conditions for stability can also be used to analyse the stability of most previous MPC schemes. The class of nonlinear systems addressed is significantly enlarged by removing the traditional assumptions on the continuity of the optimal controls and on the stabilizability of the linearized system. Some important classes of nonlinear systems, including some nonholonomic systems, can now be stabilized by MPC. In addition, we can exploit increased flexibility in the choice of design parameters to reduce the constraints of the optimal control problem, and thereby reduce the computational effort in the optimization algorithms used to implement MPC.

MSC:

93B51 Design techniques (robust design, computer-aided design, etc.)
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Astolfi, A., Discontinuous control of nonholonomic systems, Systems control lett., 27, 37-45, (1996) · Zbl 0877.93107
[2] Bitmead, R.R.; Gevers, M.; Wertz, V., Adaptive optimal control: the thinking Man’s GPC, (1990), Prentice-Hall Englewood Cliffs, NJ · Zbl 0751.93052
[3] Brockett, R.W., Asymptotic stability and feedback stabilization, (), 181-191 · Zbl 0528.93051
[4] Chen, H.; Allgöwer, F., Nonlinear model predictive control schemes with guaranteed stability, () · Zbl 0947.93013
[5] Chen, H.; Allgöwer, F., A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability, Automatica, 34, 10, 1205-1217, (1998) · Zbl 0947.93013
[6] Clarke, F.H.; Ledyaev, Y.S.; Sontag, E.D.; Subbotin, A.I., Asymptotic controllability implies feedback stabilization, IEEE trans. automat. control, 42, 10, 1394-1407, (1997) · Zbl 0892.93053
[7] Coron, J.M.; Rosier, L., A relation between time-varying and discontinuous feedback stabilization, J. math. systems, estim. control, 4, 67-84, (1994) · Zbl 0925.93827
[8] De Nicolao, G.; Magni, L.; Scattolini, R., Stabilizing receding-horizon control of nonlinear time-varying systems, IEEE trans. automat. control, 43, 7, 1030-1036, (1998) · Zbl 0951.93063
[9] Fleming, W.H.; Rishel, R.W., Deterministic and stochastic optimal control, (1975), Springer NewYork · Zbl 0323.49001
[10] F.A.C.C. Fontes, Optimisation-based control of constrained nonlinear systems, Ph.D. Thesis, Imperial College of Science Technology and Medicine, University of London, London SW7 2BY, UK, 1999.
[11] F.A.C.C. Fontes, R.B. Vinter, Design of nonlinear model predictive controllers with specified rates of exponential decay, Technical Report C00.1, Centre for Process Systems Engineering, Imperial College, London SW7 2BY, UK, 1999.
[12] F.A.C.C. Fontes, R.B. Vinter, Nonlinear model predictive control: Specifying rates of exponential stability without terminal state constraints, Proceedings of ADCHEM 2000 - IFAC Meeting on Advanced Control of Chemical Processes, Pisa, Italy, June 2000.
[13] A. Jadbabaie, J. Yu, J. Hauser, Stabilizing receding horizon control of nonlinear systems, American Control Conference, San Diego, USA, June 1999. · Zbl 1009.93028
[14] Keerthi, S.; Gilbert, E., Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon aproximations, J. optim. theory appl., 57, 265-293, (1988) · Zbl 0622.93044
[15] Magni, L.; Sepulchre, R., Stability margins of nonlinear receding horizon control via inverse optimality, Systems control lett., 32, 241-245, (1997) · Zbl 0902.93061
[16] D.Q. Mayne, Nonlinear model predictive control: An assessment, Proceedings of the Fifth International Conference on Chemical Process Control, A.I.Che Symposium Series, Vol. 93, 1997, pp. 217-231.
[17] Mayne, D.Q.; Michalska, H., Receding horizon control of nonlinear systems, IEEE trans. automat. control, 35, 814-824, (1990) · Zbl 0715.49036
[18] D.Q. Mayne, J.B. Rawlings, C.V. Rao, P.O.M. Scokaert, Model predictive control: a review. Automatica 1998, to appear. · Zbl 0949.93003
[19] Meadows, E.S.; Henson, M.A.; Eaton, J.E.; Rawlings, J.B., Constrained model predictive control: stability and optimality, Automatica, 36, 789-814, (2000) · Zbl 0949.93003
[20] Michalska, H.; Mayne, D.Q., Robust receding horizon control of constrained nonlinear systems, IEEE trans. automat. control, 38, 1623-1633, (1993) · Zbl 0790.93038
[21] Michalska, H.; Vinter, R.B., Nonlinear stabilization using discontinuous moving-horizon control, IMA J. math. control inform., 11, 321-340, (1994) · Zbl 0812.93058
[22] Primbs, J.A.; Nevistić, V.; Doyle, J.C., A receding horizon generalization of pointwise MIN-norm controllers, IEEE trans. automat. control, 45, 5, 898-909, (2000) · Zbl 0976.93024
[23] Rawlings, J.B.; Muske, K.R., The stability of constrained receding horizon control, IEEE trans. automat. control, 38, 10, 1512-1516, (1993) · Zbl 0790.93019
[24] Ryan, E.P., On Brockett’s condition for smooth stabilizability and its necessity in a context of nonsmooth feedback, SIAM J. control optim., 32, 1597-1604, (1994) · Zbl 0806.93049
[25] E.D. Sontag, H.J. Sussman, Remarks on continuous feedback, IEEE Conference on Decision and Control, Albuquerque, 1980, pp. 916-921.
[26] R.B. Vinter, Optimal Control, Birkhauser, Boston 2000. · Zbl 0952.49001
[27] Yang, T.H.; Polak, E., Moving horizon control of nonlinear systems with input saturation, disturbances and plant uncertainty, Internat. J. control, 58, 4, 875-903, (1993) · Zbl 0786.93046
[28] Young, L.C., Lectures on the calculus of variations and optimal control theory, (1969), Saunders Philadelphia · Zbl 0177.37801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.