Roblot, Xavier-François Stark’s conjectures and Hilbert’s twelfth problem. (English) Zbl 0986.11074 Exp. Math. 9, No. 2, 251-260 (2000). The author discusses the explicit construction of real (relative) abelian extensions via Stark units. In the first section, an appropriate version of Stark’s conjecture is introduced. It is followed by a constructive proof of a known conditional theorem stating that under the assumption of Stark’s conjecture the maximal real abelian extension of a number field \(K\) can be generated by Stark units. This method is then used for actually computing real abelian extensions. Two examples illustrate the ideas, the calculation of the Hilbert class field of the real quadratic field of discriminant 328 (absolute degree 8), and of a ray class field of the totally real cubic field of discriminant 229, the module being a prime ideal of degree one above 37 (absolute degree 9). Reviewer: M.Pohst (Berlin) Cited in 5 Documents MSC: 11Y40 Algebraic number theory computations 11R20 Other abelian and metabelian extensions Keywords:abelian extensions; Stark units × Cite Format Result Cite Review PDF Full Text: DOI EuDML HAL References: [1] Bach E., Math. Comp. 65 (216) pp 1717– (1996) · Zbl 0853.11077 · doi:10.1090/S0025-5718-96-00763-6 [2] Batut C., ”Pari-GP, version 2.0” (1999) [3] Cohen H., Math. Comp. 69 pp 1229– (2000) · Zbl 1042.11075 · doi:10.1090/S0025-5718-99-01111-4 [4] Cohen H., ”Algorithmic techniques for relative extensions of number fields” (1996) [5] Cohen H., Math. Comp. 67 (222) pp 773– (1998) · Zbl 0929.11064 · doi:10.1090/S0025-5718-98-00912-0 [6] Daberkow, M. and Pohst, M. 1995.”Computations with relative extensions of number fields with an application to the construction of Hilbert class fields”68–76. New York: ACM Press. [Daberkow and Pohst 1995],Proc. ISSAC’95 · Zbl 0930.11089 [7] Dummit, D. and Tangedal, B. ”Computing the leading term of an abelian L-function”. Algorithmic number theory: third international symposium, ANTS-III. Portland, OR. Edited by: Buhler, J. P. pp.400–411. Berlin: Springer. [Dummit and Tangedal 1998], Lecture Notes in Comp. Sci. 1423 · Zbl 0918.11059 [8] Dummit D. S., Math. Comp. 66 (219) pp 1239– (1997) · Zbl 0904.11033 · doi:10.1090/S0025-5718-97-00852-1 [9] Fieker C., Math. Comp. (2000) [10] Friedman E., ”Hecke’s integral formula” (1988) · Zbl 0697.12010 [11] Lang S., Fundamentals of Diophantine geometry (1983) · Zbl 0528.14013 · doi:10.1007/978-1-4757-1810-2 [12] Martinet J., Algebraic number fields: L-functions and Galois properties (Durham, 1975) pp 1– (1977) [13] Roblot X.-F., Thèse, in: Algorithmes de factorisation dans les extensions relatives et applications de la conjecture de Stark à la construction des corps de classes de rayon (1997) [14] Stark H. M., Advances in Math. 7 pp 301– (1971) · Zbl 0263.10015 · doi:10.1016/S0001-8708(71)80009-9 [15] Stark H. M., Advances in Math. 17 (1) pp 60– (1975) · Zbl 0316.12007 · doi:10.1016/0001-8708(75)90087-0 [16] Stark H. M., Advances in Math. 22 (1) pp 64– (1976) · Zbl 0348.12017 · doi:10.1016/0001-8708(76)90138-9 [17] Stark H. M., Adv. in Math. 35 (3) pp 197– (1980) · Zbl 0475.12018 · doi:10.1016/0001-8708(80)90049-3 [18] Tate J., Les conjectures de Stark sur les fonctions L d’Artin en s = 0 (1984) · Zbl 0545.12009 [19] DOI: 10.1090/S0025-5718-97-00871-5 · Zbl 0877.11061 · doi:10.1090/S0025-5718-97-00871-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.