zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Inhomogeneous scaling behaviors in Malaysian foreign currency exchange rates. (English) Zbl 0986.91042
Summary: In this paper, we investigate the fractal scaling behaviors of foreign currency exchange rates with respect to Malaysian currency, Ringgit Malaysia. These time series are examined piecewise before and after the currency control imposed in 1st September 1998 using the monofractal model based on fractional Brownian motion. The global Hurst exponents are determined using the R/S analysis, the detrended fluctuation analysis and the method of second moment using the correlation coefficients. The limitation of these monofractal analyses is discussed. The usual multifractal analysis reveals that there exists a wide range of Hurst exponents in each of the time series. A new method of modelling the multifractal time series based on multifractional Brownian motion with time-varying Hurst exponents is studied.

91B84Economic time series analysis
Full Text: DOI
[1] Plerou, V.; Gopikrishnan, P.; Rosenow, B.; Amaral, L. A. N.; Stanley, H. E.: Physica A. 279, 443 (2000) · Zbl 0974.91025
[2] Schmitt, F.; Schertzer, D.; Lovejoy, S.: Appl. stochast. Model data anal.. 15, 29 (1999)
[3] Bershadskii, A.: Eur. phys. J. B. 11, 361 (1999)
[4] Stauffer, D.; Sornette, D.: Physica A. 271, 496 (1999)
[5] Black, F.; Scholes, M.: J. political econom.. 81, 637 (1973)
[6] Batchelier, L.: Reprinted in: P.H. Cootner, the random character of stock market prices. (1964)
[7] Mantegna, R. N.; Stanley, H. E.: An introduction to econophysics: correlation and complexity in finance. (1999) · Zbl 1138.91300
[8] Evertsz, C. J. G.; Berkner, K.: Chaos, soliton fractals. 6, 121 (1995)
[9] Stanley, H. E.; Amaral, L. A. N.; Canning, D.; Gopikrishnan, P.; Lee, Y.; Liu, Y.: Physica A. 269, 156 (1999)
[10] Mandelbrot, B. B.; Van Ness, J.: SIAM rev.. 10, 422 (1968)
[11] Peters, E. E.: Fractal market analysis: applying chaos theory to investment and economics. (1994)
[12] Weron, A.; Weron, R.: Chaos, soliton fractals. 11, 289 (2000)
[13] Hurst, H. E.: Trans. am. Soc. civil eng.. 116, 770 (1951)
[14] Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.: Phys. rev. E. 49, 1684 (1994)
[15] Hastings, H. M.; Sugihara, G.: Fractals: A user’s guide for the natural science. (1993) · Zbl 0820.28003
[16] Ausloos, M.: Physica A. 285, 48 (2000)
[17] Skjeltorp, J. A.: Physica A. 283, 486 (2000)
[18] http://www.bnm.gov.my.
[19] M. Shanmugan, Malaysian Business, October 1 (1998) p. 20.
[20] Farmer, J. D.; Lo, A. W.: Proc. natl. Acad. sci. USA. 96, 9991 (1999)
[21] Mandelbrot, B. B.: Fractals and scaling in finance: discontinuity, concentration, risk. (1997) · Zbl 1005.91001
[22] Paul, W.; Baschnagel, J.: Stochastic processes: from physics to finance. (2000) · Zbl 1295.60004
[23] Barnes, J. A.; Allan, D. W.: Proc. IEEE. 54, No. 2, 176 (1966)
[24] Lim, S. C.; Sithi, V. M.: Phys. lett. A. 206, 311 (1995)
[25] Lim, S. C.: J. phys. A: math. Gen.. 34, 1301 (2001)
[26] Marge, O.; Guglielmi, M.: Chaos, solitons fractals. 8, No. 3, 377 (1997)
[27] Mandelbrot, B. B.; Wallis, J. R.: Water resour. Res.. 5, 909 (1969)
[28] Tsonis, A. A.; Heller, F.; Takayasu, H.; Marumo, K.; Shiizu, T.: Physica A. 291, 574 (2001) · Zbl 0972.91070
[29] Mandelbrot, B. B.: Fractal: form, chance and dimension. (1977) · Zbl 0376.28020
[30] Arneodo, A.; Muzy, J. F.; Sornette, D.: Eur. phys. J.. 2, 277 (1998)
[31] Liu, Y.; Cizeau, P.; Meyer, M.; Peng, C. K.; Stanley, H. E.: Physica A. 245, 437 (1997)
[32] Muzy, J. F.; Bacry, E.; Arneodo, A.: Int. J. Bifurcat. chaos. 4, 245 (1994)
[33] Mallat, S.: A wavelet tour of signal processing. (1998) · Zbl 0937.94001
[34] F. Roueff, J. Levy-Vehel, INRIA Preprint, 1998.
[35] R.F. Peltier, J. Levy-Vehel, INRIA Technical Report No. 2645, 1995.
[36] Benassi, A.; Jaffard, S.; Roux, D.: Revista math. Iberoamericana. 13, 19 (1997)
[37] Lim, S. C.; Muniandy, S. V.: Phys. lett. A. 266, 140 (2000)
[38] Muniandy, S. V.; Lim, S. C.: Phys. rev. E. 63, 046104 (2001)
[39] A. Shameen, Asiaweek, May 25, 27 (2001) 44.
[40] M. Shari, Business Week, May 28 (2001) 29.
[41] S.Y. Lin, Malaysian Business, January 16, 1999, p. 23.
[42] P. Crisp, Asiaweek, April 27, 22 (2001) 26.