zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of continuous-time switching networks. (English) Zbl 0986.94051
An idealized class of continuous-time switching networks, called Glass networks, is studied. The existence and stability of periodic orbits for such networks are investigated by means of discrete maps. The nature of aperiodic behaviour in Glass networks is shown with a particular example as an illustration of the approach.

94C05Analytic circuit theory
34C25Periodic solutions of ODE
94C10Switching theory, application of Boolean algebra; Boolean functions
Full Text: DOI
[1] Glass, L.: Classification of biological networks by their qualitative dynamics. J. theoret. Biol. 54, 85-107 (1975)
[2] Glass, L.: Combinatorial and topological methods in nonlinear chemical kinetics. J. chem. Phys. 63, 1325-1335 (1975)
[3] L. Glass, Combinatorial aspects of dynamics in biological systems, in: U. Landman (Ed.), Statistical Mechanics and Statistical Methods in Theory and Application, Plenum Press, New York, 1977, pp. 585--611.
[4] L. Glass, Global analysis of nonlinear chemical kinetics, in: B.J. Berne (Ed.), Statistical Mechanics, Part B: Time-dependent Processes, Plenum Press, New York, 1977, pp. 311--349.
[5] Glass, L.; Kauffman, S. A.: The logical analysis of continuous non-linear biochemical control networks. J. theoret. Biol. 39, 103-129 (1973)
[6] R. Edwards, Chaos in a continuous-time switching network, in: Proceedings of the Third International Conference on Dynamic Systems and Applications, Atlanta, May 1999.
[7] Glass, L.; Pasternack, J. S.: Prediction of limit cycles in mathematical models of biological oscillations. Bull. math. Biol. 40, 27-44 (1978) · Zbl 0391.92001
[8] Glass, L.; Pasternack, J. S.: Stable oscillations in mathematical models of biological control systems. J. math. Biol. 6, 207-223 (1978) · Zbl 0391.92001
[9] Mestl, T.; Plahte, E.; Omholt, S. W.: Periodic solutions in systems of piecewise-linear differential equations. Dyn. stability syst. 10, 179-193 (1995) · Zbl 0833.34027
[10] Mestl, T.; Lemay, C.; Glass, L.: Chaos in high-dimensional neural and gene networks. Physica D 98, 33-52 (1996) · Zbl 0890.58054
[11] Glass, L.; Young, R. E.: Structure and dynamics of neural network oscillators. Brain res. 179, 207-218 (1979)
[12] Lewis, J. E.; Glass, L.: Steady states, limit cycles, and chaos in models of complex biological networks. Int. J. Bifurc. chaos 1, 477-483 (1991) · Zbl 0900.92006
[13] Lewis, J. E.; Glass, L.: Nonlinear dynamics and symbolic dynamics of neural networks. Neural comput. 4, 621-642 (1992)
[14] Mestl, T.; Bagley, R. J.; Glass, L.: Common chaos in arbitrarily complex feedback networks. Phys. rev. Lett. 79, 653-656 (1997)
[15] Glass, L.; Hill, C.: Ordered and disordered dynamics in random networks. Europhys. lett. 41, 599-604 (1998)
[16] Edwards, R.; Beuter, A.; Glass, L.: Simplification of network dynamics and parkinsonian tremor. Bull. math. Biol. 61, 157-177 (1999) · Zbl 1323.92044
[17] Kauffman, S. A.: Metabolic stability and epigenesis in randomly constructed genetic networks. J. theoret. Biol. 22, 437-467 (1969)
[18] S.A. Kauffman, Origins of Order: Self-organization and Selection in Evolution, Oxford University Press, Oxford, 1993.
[19] Plahte, E.; Mestl, T.; Omholt, S. W.: A methodological basis for description and analysis of systems with complex switch-like interactions. J. math. Biol. 36, 321-348 (1998) · Zbl 0897.92001
[20] Snoussi, E. H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. stability syst. 4, 189-207 (1989) · Zbl 0678.34010
[21] R. Thomas, R. D’Ari, Biological Feedback, CRC Press, Boca Raton, FL, 1990.
[22] Sompolinsky, H.; Crisanti, A.; Sommers, H. J.: Chaos in random neural networks. Phys. rev. Lett. 61, 259-262 (1988)
[23] Plahte, E.; Mestl, T.; Omholt, S. W.: Global analysis of steady points for systems of differential equations with Sigmoid interactions. Dyn. stability syst. 9, 275-291 (1994) · Zbl 0821.34025
[24] R. Edwards, L. Glass, Combinatorial explosion in model gene networks, Chaos, in press. · Zbl 1033.92014
[25] A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979. · Zbl 0484.15016
[26] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1990. · Zbl 0704.15002
[27] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995. · Zbl 1106.37301
[28] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, New York, 1989. · Zbl 0695.58002
[29] M. Tsatsomeros, Personal communication, 1998.