A boundary value problem in the hyperbolic space. (English) Zbl 0987.35058

Let \(M\) be the open unit ball in \(\mathbb{R}^3\) of center 0 and let \(g_{ij}(x)= {4\delta_{ij} \over\bigl(1- |x|^2\bigr)^2}\) be the hyperbolic metric on \(M\). Let \(\Omega\subset \mathbb{R}^2\) be a bounded domain with smooth boundary \(\partial\Omega\in C^{1,0}\), and let \((u,v)\) be the variables in \(\mathbb{R}^2\). The authors deal with the Dirichlet problem for a function \(Y: \overline \Omega\to M\) which satisfies the equation of prescribed mean curvature \[ \begin{cases} (1) \quad \nabla_{Y_u}Y_u+ \nabla_{Y_v}Y_v= -2H(Y)\cdot Y_u\wedge Y_v \text{ in } \Omega,\\ (2) \quad Y=g\text{ on }\partial \Omega,\end{cases} \] where \(H:M \to\mathbb{R}\) is a given continuous function, and \(g\in W^{2,p}(\Omega,\mathbb{R}^3)\) for \(1<p< \infty\), with \(\|g\|_\infty <1\). The authors prove solutions in a Sobolev space and present some regularity result of solutions.


35J65 Nonlinear boundary value problems for linear elliptic equations
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
Full Text: DOI EuDML Link