×

zbMATH — the first resource for mathematics

Braid groups are linear. (English) Zbl 0988.20021
D. Krammer [Invent. Math. 142, No. 3, 451-486 (2000; see the review Zbl 0988.20023 below)] proved that a representation of the braid groups \(B_n\) is faithful in the case \(n=4\). The representation Krammer used is essentially the same as one used by R. J. Lawrence [Commun. Math. Phys. 135, No. 1, 141-191 (1990; Zbl 0716.20022)]. The author calls this representation the Lawrence-Krammer representation.
In the paper the author proves by topological methods that the Lawrence-Krammer representation is faithful for all \(n\).

MSC:
20F36 Braid groups; Artin groups
20C15 Ordinary representations and characters
57M07 Topological methods in group theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Stephen Bigelow, The Burau representation is not faithful for \(n=5\), Geometry and Topology 3 (1999), 397-404. CMP 2000:05 · Zbl 0942.20017
[2] Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82. Joan S. Birman, Erratum: ”Braids, links, and mapping class groups” (Ann. of Math. Studies, No. 82, Princeton Univ. Press, Princeton, N. J., 1974), Princeton University Press, Princeton, N. J.; University of Tokyo Press, Toyko, 1975. Based on lecture notes by James Cannon. · Zbl 0297.57001
[3] Joan S. Birman and Hans Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1989), no. 1, 249 – 273. · Zbl 0684.57004
[4] W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Ham. II (1936), 171-178. · Zbl 0011.17801
[5] Travaux de Thurston sur les surfaces, Astérisque, vol. 66, Société Mathématique de France, Paris, 1979 (French). Séminaire Orsay; With an English summary. · Zbl 0731.57001
[6] Daan Krammer, The braid group \({B}_4\) is linear, Preprint, 1999. · Zbl 0988.20023
[7] Daan Krammer, Braid groups are linear, Preprint, 2000. · Zbl 0988.20023
[8] R. J. Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys. 135 (1990), no. 1, 141 – 191. · Zbl 0716.20022
[9] D. D. Long and M. Paton, The Burau representation is not faithful for \?\ge 6, Topology 32 (1993), no. 2, 439 – 447. · Zbl 0810.57004
[10] John Atwell Moody, The Burau representation of the braid group \?_{\?} is unfaithful for large \?, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 379 – 384. · Zbl 0751.57005
[11] Jun Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (1987), no. 4, 745 – 758. · Zbl 0666.57006
[12] L. Paris and D. Rolfsen, Geometric subgroups of surface braid groups, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 2, 417 – 472 (English, with English and French summaries). · Zbl 0962.20028
[13] Vladimir Turaev, Faithful Linear Representations of the Braid Groups, arXiv: math.GT/0006202. · Zbl 1050.20026
[14] Matthew G. Zinno, On Krammer’s Representation of the Braid Group, arXiv: math.RT/0002136. · Zbl 1042.20023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.