zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Remarks on weak stabilization of semilinear wave equations. (English) Zbl 0988.35029
Summary: If a second-order semilinear conservative equation with esssentially oscillatory solutions such as the wave equation is perturbed by a possibly nonmonotone damping term, which is effective in a nonnegligible subregion for at least one sign of the velocity, all solutions of the perturbed system converge weakly to zero as time tends to infinity. We present here a simple and natural method of proof of this kind of property, implying as a consequence some recent very general results of Judith Vancostenoble.

MSC:
35B40Asymptotic behavior of solutions of PDE
35L90Abstract hyperbolic equations
35B35Stability of solutions of PDE
35L55Higher order hyperbolic systems
35L70Nonlinear second-order hyperbolic equations
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] L. Amerio and G. Prouse , Abstract almost periodic functions and functional equations . Van Nostrand, New-York ( 1971 ). MR 275061 | Zbl 0215.15701 · Zbl 0215.15701
[2] J.M. Ball and M. Slemrod , Feedback stabilization of distributed semilinear control systems . Appl. Math. Optim. 5 ( 1979 ) 169 - 179 . MR 533618 | Zbl 0405.93030 · Zbl 0405.93030 · doi:10.1007/BF01442552
[3] M. Biroli , Sur les solutions bornées et presque périodiques des équations et inéquations d’évolution . Ann. Math. Pura Appl. 93 ( 1972 ) 1 - 79 . Zbl 0281.35006 · Zbl 0281.35006 · doi:10.1007/BF02412015
[4] T. Cazenave and A. Haraux , Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires . C. R. Acad. Sci. Paris Sér. I Math. 298 ( 1984 ) 449 - 452 . MR 750743 | Zbl 0571.35074 · Zbl 0571.35074
[5] T. Cazenave and A. Haraux , Oscillatory phenomena associated to semilinear wave equations in one spatial dimension . Trans. Amer. Math. Soc. 300 ( 1987 ) 207 - 233 . MR 871673 | Zbl 0628.35058 · Zbl 0628.35058 · doi:10.2307/2000596
[6] T. Cazenave and A. Haraux , Some oscillatory properties of the wave equation in several space dimensions . J. Funct. Anal. 76 ( 1988 ) 87 - 109 . MR 923046 | Zbl 0656.35099 · Zbl 0656.35099 · doi:10.1016/0022-1236(88)90050-X
[7] T. Cazenave , A. Haraux and F.B. Weissler , Une équation des ondes complètement intégrable avec non-linéarité homogène de degré 3 . C. R. Acad. Sci. Paris Sér. I Math. 313 ( 1991 ) 237 - 241 . MR 1126387 | Zbl 0755.35009 · Zbl 0755.35009
[8] T. Cazenave , A. Haraux and F.B. Weissler , A class of nonlinear completely integrable abstract wave equations . J. Dynam. Differential Equations 5 ( 1993 ) 129 - 154 . MR 1205457 | Zbl 0783.35003 · Zbl 0783.35003 · doi:10.1007/BF01063738
[9] T. Cazenave , A. Haraux and F.B. Weissler , Detailed asymptotics for a convex hamiltonian system with two degrees of freedom . J. Dynam. Differential Equations 5 ( 1993 ) 155 - 187 . MR 1205458 | Zbl 0771.34038 · Zbl 0771.34038 · doi:10.1007/BF01063739
[10] F. Conrad and M. Pierre , Stabilization of second order evolution equations by unbounded nonlinear feedbacks . Ann. Inst. H. Poincaré Anal. Non Linéaire 11 ( 1994 ) 485 - 515 . Numdam | MR 1302277 | Zbl 0841.93028 · Zbl 0841.93028 · numdam:AIHPC_1994__11_5_485_0 · eudml:78341
[11] A. Haraux , Comportement à l’infini pour une équation des ondes non linéaire dissipative . C. R. Acad. Sci. Paris Sér. I Math. 287 ( 1978 ) 507 - 509 . Zbl 0396.35065 · Zbl 0396.35065
[12] A. Haraux , Comportement à l’infini pour certains systèmes dissipatifs non linéaires . Proc. Roy. Soc. Edinburgh Ser. A 84 ( 1979 ) 213 - 234 . Zbl 0429.35013 · Zbl 0429.35013 · doi:10.1017/S0308210500017091
[13] A. Haraux , Stabilization of trajectories for some weakly damped hyperbolic equations . J. Differential Equations 59 ( 1985 ) 145 - 154 . MR 804885 | Zbl 0535.35006 · Zbl 0535.35006 · doi:10.1016/0022-0396(85)90151-2
[14] A. Haraux and V. Komornik , Oscillations of anharmonic Fourier series and the wave equation . Rev. Mat. Iberoamericana 1 ( 1985 ) 57 - 77 . MR 850409 | Zbl 0612.35077 · Zbl 0612.35077 · doi:10.4171/RMI/18 · eudml:39830
[15] A. Haraux , Semi-linear hyperbolic problems in bounded domains , Mathematical Reports Vol. 3, Part 1 , edited by J. Dieudonné. Harwood Academic Publishers, Gordon & Breach ( 1987 ). MR 1078761 | Zbl 0875.35054 · Zbl 0875.35054
[16] A. Haraux , Systèmes dynamiques dissipatifs et applications , R.M.A. 17, edited by Ph. Ciarlet and J.L. Lions. Masson, Paris ( 1990 ). MR 1084372 | Zbl 0726.58001 · Zbl 0726.58001
[17] A. Haraux , Strong oscillatory behavior of solutions to some second order evolution equations , Publication du Laboratoire d’Analyse Numérique 94033, 10 p.
[18] B.M. Levitan and V.V. Zhikov , Almost periodic functions and differential equations . Cambridge University Press, Cambridge ( 1982 ). MR 690064 | Zbl 0499.43005 · Zbl 0499.43005
[19] M. Slemrod , Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear, nonmonotone damping . Proc. Roy. Soc. Edinburgh Ser. A 113 ( 1989 ) 87 - 97 . MR 1025456 | Zbl 0699.35023 · Zbl 0699.35023 · doi:10.1017/S0308210500023970
[20] J. Vancostenoble , Weak asymptotic stability of second order evolution equations by nonlinear and nonmonotone feedbacks . SIAM J. Math. Anal. 30 ( 1998 ) 140 - 154 . MR 1646669 | Zbl 0951.35092 · Zbl 0951.35092 · doi:10.1137/S0036141098332378
[21] J. Vancostenoble , Weak asymptotic decay for a wave equation with weak nonmonotone damping , 17p (to appear). · Zbl 0973.35131
[22] G.F. Webb , Compactness of trajectories of dynamical systems in infinite dimensional spaces . Proc. Roy. Soc. Edinburgh Ser. A 84 ( 1979 ) 19 - 34 . MR 549869 | Zbl 0414.34042 · Zbl 0414.34042 · doi:10.1017/S0308210500016930