zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A priori estimates for solutions of fully nonlinear special Lagrangian equations. (English. French summary) Zbl 0988.35058
Summary: We derive an a priori $C^{2,\alpha}$ estimate in dimension three for the equation $F(D^2u)= \arctan\lambda_1 +\arctan\lambda_2 + \arctan \lambda_3=c$, where $\lambda_1,\lambda_2, \lambda_3$ are the eigenvalues of the Hessian $D^2u$. For $-\pi/2 <c<\pi/2$, the $c$-level set of $F(D^2u)$ fails the convexity condition. Note that for any solution $u$ of the above equation, $(x,\nabla u(x))$ is a minimizing graph in $\bbfR^6$. For $c=0$, $\pm\pi$, the equation is equivalent to $\Delta u=\det D^2u$.

MSC:
35J60Nonlinear elliptic equations
35B45A priori estimates for solutions of PDE
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] Caffarelli, L. A.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. math. 130, 189-213 (1989) · Zbl 0692.35017
[2] Caffarelli, L. A.; Cabré, X.: Fully nonlinear elliptic equations. American mathematical society colloquium publications 43 (1995)
[3] Caffarelli, L. A.; Crandall, M. G.; Kocan, M.; Świech, A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. pure appl. Math. 49, 365-397 (1996) · Zbl 0854.35032
[4] Caffarelli, L. A.; Nirenberg, L.; Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta math. 155, 261-301 (1985) · Zbl 0654.35031
[5] Caffarelli L.A., Yuan Y., A Priori estimates for solutions of fully nonlinear equations with convex level set, Indiana Univ. Math. J., to appear · Zbl 0965.35045
[6] Calabi, E.: Minimal immersions of surfaces in Euclidean spheres. J. differential geom. 1, 111-125 (1967) · Zbl 0171.20504
[7] Chiarenza, F.; Frasca, M.; Longo, P.: W2,p solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. amer. Math. soc. 336, 841-853 (1993) · Zbl 0818.35023
[8] Evans, L. C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. pure appl. Math. 35, No. 3, 333-363 (1982) · Zbl 0469.35022
[9] Gilbarg, D.; Trudinger, N. S.: Elliptic partial differential equations of second order. (1983) · Zbl 0562.35001
[10] Harvey, R.; Jr., H. B. Lawson: Calibrated geometry. Acta math. 148, 47-157 (1982)
[11] Huang Q.-B., On the regularity of solutions to fully nonlinear elliptic equations via Liouville property, Proc. Amer. Math. Soc., to appear
[12] Krylov, N. V.: Boundedly nonhomogeneous elliptic and parabolic equations. Izv. akad. Nauk SSSR ser. Mat. 46, No. 3, 487-523 (1982) · Zbl 0511.35002
[13] Simon, L.: Lectures on geometric measure theory. Proc. C. M. A., austr. Nat. univ. 3 (1983) · Zbl 0546.49019