×

Walters’ regularity condition. (La condition de Walters.) (French) Zbl 0988.37036

In the study of invariant measures and equilibrium states for some mappings which expand distances [Trans. Am. Math. Soc. 236, 127-153 (1978; Zbl 0375.28009)] P. Walters introduced a regularity condition for the needs of the thermodynamic formalism. In particular that refers to the topological conjugacy of dynamical systems and links with Bernoulli shifts.
By generalizing observations due to R. Mañé [Nonlinearity 9, 273-310 (1996; Zbl 0886.58037)] on minimizing measures of Lagrangian systems to the hyperbolic case, the Walter condition is shown to be necessary in the study of maximizing measures, and in the search of normal forms modulo coboundaries of continuous functions.

MSC:

37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37A60 Dynamical aspects of statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Aliprantis C.D , Border K.C , Infinite-Dimensional Analysis: A Hitchhiker’s Guide , Springer-Verlag , 1999 . MR 1717083 | Zbl 0839.46001 · Zbl 0839.46001
[2] Bousch T , Le poisson n’a pas d’arêtes , Preprint, Université d’Orsay , 1999 , [à paraître dans Ann. Inst. Henri-Poincaré, Probab.-Statis.]. Numdam
[3] Carlson D.A , Haurie A.B , Leizarowitz A , Infinite Horizon Optimal Control: Deterministic and Stochastic Systems , Springer-Verlag , 1991 . Zbl 0758.49001 · Zbl 0758.49001
[4] Coelho Z , Entropy and ergodicity of skew-products over subshifts of finite type and central limit asymptotics , Thèse, Université de Warwick , 1990 .
[5] Coelho Z , Quas A.N , Criteria for \(\overline d\)-continuity , Trans. Amer. Math. Soc. 350 ( 1998 ). Zbl 0907.28013 · Zbl 0907.28013
[6] Contreras G , Lopes A , Thieullen P , Lyapunov minimizing measures for expanding maps of the circle , Manuscrit , 1999 . · Zbl 0997.37016
[7] Fathi A , Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens , C. R. Acad. Sci. Paris, Série I 324 ( 1997 ). MR 1451248 | Zbl 0885.58022 · Zbl 0885.58022
[8] Hunt B.R , Ott E , Optimal periodic orbits of chaotic systems occur at low period , Phys. Rev. E 54 ( 1996 ) 328 .
[9] Jenkinson O.M , Conjugacy rigidity, cohomological triviality, and barycentres of invariant measures , Thèse, Université de Warwick , 1996 .
[10] Jenkinson O.M , Frequency-locking on the boundary of the barycentre set , Experimental Mathematics 9 ( 2000 ). Article | MR 1780215 | Zbl 1106.37303 · Zbl 1106.37303
[11] Kondah A , Maume V , Schmitt B , Vitesse de convergence vers l’état d’équilibre pour des dynamiques markoviennes non höldériennes , Ann. Inst. Henri-Poincaré, Probab.-Statis. 33 ( 1997 ). Numdam | MR 1484537 | Zbl 0913.60046 · Zbl 0913.60046
[12] Livšic A.N , Homology properties of Y-systems , Math. Zametki 10 ( 1971 ), [Traduction anglaise: Math. Notes 10 (1971)]. MR 293669 | Zbl 0235.58010 · Zbl 0235.58010
[13] Mañé R , Generic properties and problems of minimizing measures of Lagrangian systems , Nonlinearity 9 ( 1996 ). MR 1384478 | Zbl 0886.58037 · Zbl 0886.58037
[14] Rudin W , Real and Complex Analysis , McGraw-Hill , 1987 . MR 924157 | Zbl 0925.00005 · Zbl 0925.00005
[15] Sinaĭ Y.G , Gibbs measures in ergodic theory , Uspekhi Math. Nauk 27 ( 1972 ), [Traduction anglaise: Russian Math. Surveys 27 (1972)]. MR 399421 | Zbl 0255.28016 · Zbl 0255.28016
[16] Walters P , Invariant measures and equilibrium states for some mappings which expand distances , Trans. Amer. Math. Soc. 236 ( 1978 ). MR 466493 | Zbl 0375.28009 · Zbl 0375.28009
[17] Yuan G , Hunt B.R , Optimal orbits of hyperbolic systems , Nonlinearity 12 ( 1999 ). MR 1709845 | Zbl 0951.37006 · Zbl 0951.37006
[18] Ziemian K , Rotation sets for subshifts of finite type , Fund. Math. 146 ( 1995 ). MR 1314983 | Zbl 0821.58017 · Zbl 0821.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.