Ivanov, O. V.; Leonenko, M. M. Asymptotic inference for a nonlinear regression with a long-range dependence. (English. Ukrainian original) Zbl 0988.62015 Theory Probab. Math. Stat. 63, 65-85 (2001); translation from Teor. Jmovirn. Mat. Stat. 63, 61-79 (2000). Let \(\xi(t),\;t\in R^1,\) be a measurable mean-square continuous Gaussian process with \(E\xi(t)=0\) and covariance function \[ B(t)=cov(\xi(0),\xi(t))=(1+t^2)^{-\alpha/2},\;0<\alpha<1,\;t\in R^1. \] Let \(\Theta\subset R^1\) be a bounded open interval, and let \(\Theta^{c}\) be the closure of \(\Theta\).The authors consider the regression model \(y_{\theta}(t)=g(t,\theta)+G(\xi(t)),\;t\in R^1\), where \(g(t,\theta):R^1\times\Theta^{c}\to R^1\) is a measurable function depending on the unknown parameter \(\theta\in \Theta\). The random noise \(\zeta(t)=G(\xi(t)),\;t\in R^1\), is such that \(E\zeta(0)=0,\;E\zeta^2(0)=1\). The nonlinear Borel function \(G:R^1\to R^1\) satisfies the condition \[ (2\pi)^{-1/2}\int_{-\infty}^{\infty}G^2(u)e^{-u^2/2}du<\infty. \] The authors investigate consistency and the asymptotic distribution for the least squares estimates of \(\theta\). Reviewer: A.D.Borisenko (Kyïv) Cited in 1 ReviewCited in 2 Documents MSC: 62F12 Asymptotic properties of parametric estimators 62J02 General nonlinear regression 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) 62E20 Asymptotic distribution theory in statistics Keywords:asymptotic inference; long-range dependence PDFBibTeX XMLCite \textit{O. V. Ivanov} and \textit{M. M. Leonenko}, Teor. Ĭmovirn. Mat. Stat. 63, 61--79 (2000; Zbl 0988.62015); translation from Teor. Jmovirn. Mat. Stat. 63, 61--79 (2000)