zbMATH — the first resource for mathematics

A class of approximate Riemann solvers and their relation to relaxation schemes. (English) Zbl 0988.65072
Summary: The authors show that a simple relaxation scheme of the type proposed by S. Jin and Z. Xin [Commun. Pure Appl. Math. 48, No. 3, 235-276 (1995; Zbl 0826.65078)] can be reinterpreted as defining a particular approximate Riemann solver for the original system of \(m\) conservation laws. Based on this observation, a more general class of approximate Riemann solvers is proposed which allows as many as \(2m\) waves in the resulting solution. These solvers are related to more general relaxation systems and connections with several other standard solvers are explored. The added flexibility of \(2m\) waves may be advantageous in deriving new methods. Some potential applications are explored for problems with discontinuous flux functions or source terms.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R05 PDEs with low regular coefficients and/or low regular data
35L65 Hyperbolic conservation laws
65H10 Numerical computation of solutions to systems of equations
Full Text: DOI
[1] Aregba-Driollet, D.; Natalini, R., Convergence of relaxation schemes for conservation laws, Appl. anal., 61, 163, (1996) · Zbl 0872.65086
[2] Aregba-Driollet, D.; Natalini, R., Discrete kinetic schemes for multidimensional systems of conservation laws, SIAM J. numer. anal., 37, 1973, (2000) · Zbl 0964.65096
[3] Arora, M.; Roe, P.L., On postshock oscillations due to shock capturing schemes in unsteady flow, J. comput. phys., 130, 1, (1997)
[4] D. Bale, J. Rossmanith, and, R. J. LeVeque, A Wave-Propagation Method for Conservation Laws with Spatially Varying Flux Functions, in preparation. · Zbl 1034.65068
[5] J. Bardeen, and, L. Buchman, Numerical Tests of Evolution Systems, Gauge Conditions, and Boundary Conditions for 1D Colliding Gravitational Plane Waves, in preparation.
[6] F. Bouchut, Construction of BGK Models with a Family of Kinetic Entropies for a given System of Conservation Laws, Preprint; available at, http://www.dma.ens.fr/ fbouchut/. · Zbl 0957.82028
[7] F. Bouchut, Entropy Satisfying Flux Vector Splittings and Kinetic BGK Models, preprint; available at, http://www.dma.ens.fr/ fbouchut/. · Zbl 1029.65092
[8] Brenier, Y., Averaged multivalued solutions for scalar conservation laws, SIAM J. numer. anal., 21, 1013, (1984) · Zbl 0565.65054
[9] Chalabi, A., Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms, Math. comput., 68, 955, (1999) · Zbl 0918.35088
[10] Chen, G.Q.; Levermore, C.D.; Liu, T.P., Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. pure appl. math., 47, 787, (1994) · Zbl 0806.35112
[11] Chen, G.Q.; Liu, T.P., Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. pure appl. math., 46, 755, (1993) · Zbl 0797.35113
[12] Coquel, F.; Perthame, B., Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. numer. anal., 35, 2223, (1998) · Zbl 0960.76051
[13] Donat, R.; Marquina, A., Capturing shock reflections: an improved flux formula, J. comput. phys., 125, 42, (1996) · Zbl 0847.76049
[14] Einfeldt, B., On Godunov-type methods for gas dynamics, SIAM J. numer. anal., 25, 294, (1988) · Zbl 0642.76088
[15] Engquist, B.; Osher, S., Stable and entropy satisfying approximations for transonic flow calculations, Math. comput., 34, 45, (1980) · Zbl 0438.76051
[16] T. Gimse, and, N. H. Risebro, Riemann problems with a discontinuous flux function, in, Proc. Third Int’l. Conf. Hyperbolic Problems, edited by, B. Engquist and B. Gustafsson, Studentlitteratur, 1990, p, 488. · Zbl 0789.35102
[17] Godlewski, E.; Raviart, P.-A., Numerical approximation of hyperbolic systems of conservation laws, (1996) · Zbl 1063.65080
[18] Gosse, L.; Tzavaras, A.E., Convergence of relaxation schemes to the equations of elastodynamics, Math. comput., 70, 555, (2000) · Zbl 0964.35097
[19] Harten, A.; Hyman, J.M., Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. comput. phys., 50, 235, (1983) · Zbl 0565.65049
[20] Harten, A.; Lax, P.D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 35, (1983) · Zbl 0565.65051
[21] Hsiao, L., Quasilinear hyperbolic systems and dissipative mechanisms, (1997) · Zbl 0911.35003
[22] In, A., Numerical evaluation of an energy relaxation method for inviscid real fluids, SIAM J. sci. comput., 21, 340, (1999) · Zbl 0953.76066
[23] Jenny, P.; Müller, B., Rankine – hugoniot – riemann solver considering source terms and multidimensional effects, J. comput. phys., 145, 575, (1998) · Zbl 0926.76079
[24] Jin, S.; Katsoulakis, M.A., Relaxation approximations to front propagation, J. differential equations, 138, 380, (1997) · Zbl 0885.35070
[25] Jin, S.; Liu, J.-G., The effects of numerical viscosities: I. slowly moving shocks, J. comput. phys., 126, 373, (1996) · Zbl 0858.76054
[26] Jin, S.; Xin, Z.P., The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. pure appl. math., 48, 235, (1995) · Zbl 0826.65078
[27] Karni, S.; Canic, S., Computation of slowly moving shocks, J. comput. phys., 136, 132, (1997) · Zbl 0910.76044
[28] Katsoulakis, M.A.; Tzavaras, A.E., Contractive relaxation systems and the scalar multidimensional conservation laws, Comm. partial differential equations, 22, 195, (1997) · Zbl 0884.35093
[29] Klingenberg, C.; Risebro, N.H., Convex conservation laws with discontinuous coefficients. existence, uniqueness and asymptotic behavior, Comm. partial differential equations, 20, 1959, (1995) · Zbl 0836.35090
[30] Kurganov, A.; Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection – diffusion equations, J. comput. phys., 160, 214, (2000)
[31] Lattanzio, C.; Serre, D., Convergence of a relaxation scheme for hyperbolic systems of conservation laws, Numer. math., 88, 121, (2001)
[32] LeFloch, P.G.; Nedelec, Explicit formulas for weighted scalar nonlinear hyperbolic conservation laws, Trans. amer. math. soc., 308, 667, (1988) · Zbl 0674.35058
[33] R. J. LeVeque, \(CLAWPACK\), Software, available at, http://www.amath.washington.edu/ claw.
[34] LeVeque, R.J., A large time step generalization of Godunov’s method for systems of conservation laws, SIAM J. numer. anal., 22, 1051, (1985) · Zbl 0584.65058
[35] LeVeque, R.J., Numerical methods for conservation laws, (1990) · Zbl 0682.76053
[36] LeVeque, R.J., Wave propagation algorithms for multi-dimensional hyperbolic systems, J. comput. phys., 131, 327, (1997) · Zbl 0872.76075
[37] LeVeque, R.J., Balancing source terms and flux gradients in high-resolution Godunov methods, J. comput. phys., 146, 346, (1998) · Zbl 0931.76059
[38] Liu, H.L.; Warnecke, G., Convergence rates for relaxation schemes approximating conservation laws, SIAM J. numer. anal., 37, 1316, (2000) · Zbl 0954.35108
[39] Liu, T.P., Hyperbolic conservation laws with relaxation, Comm. math. phys., 108, 153, (1987) · Zbl 0633.35049
[40] Majda, A.; Pego, R.L., Stable viscosity matrices for systems of conservation laws, J. differential equations, 56, 229, (1985) · Zbl 0512.76067
[41] Natalini, R., Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. pure appl. math., 49, 795, (1996) · Zbl 0872.35064
[42] R. Natalini, Recent mathematical results on hyperbolic relaxation problems, in, Analysis of Systems of Conservation Laws, edited by, H. Freistühler, Chapman & Hall/CRC Press Monographs and Surveys in Pure and Applied Mathematics, 1999.
[43] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. comput. phys., 87, 408, (1990) · Zbl 0697.65068
[44] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic systems of conservation laws, Math. comput., 38, 339, (1982) · Zbl 0483.65055
[45] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357, (1981) · Zbl 0474.65066
[46] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1997) · Zbl 0888.76001
[47] Tveito, A.; Winther, R., The solution of nonstrictly hyperbolic conservation laws may be hard to compute, SIAM J. sci. comput., 16, 320, (1995) · Zbl 0824.65092
[48] Whitham, G., Linear and nonlinear waves, (1974) · Zbl 0373.76001
[49] Xu, W.-Q., Relaxation limit for piecewise smooth solutions to systems for conservation laws, J. differential equations, 162, 140, (2000) · Zbl 0949.35088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.